WWW.DOCX.LIB-I.RU
БЕСПЛАТНАЯ  ИНТЕРНЕТ  БИБЛИОТЕКА - Интернет материалы
 

Pages:     | 1 || 3 |

«Приложение N 11 к Приказу Минздрава России от 21 марта 2003 г. N 109 ИНСТРУКЦИЯ ПО УНИФИЦИРОВАННЫМ МЕТОДАМ МИКРОБИОЛОГИЧЕСКИХ ИССЛЕДОВАНИЙ ПРИ ВЫЯВЛЕНИИ, ДИАГНОСТИКЕ И ЛЕЧЕНИИ ...»

-- [ Страница 2 ] --

Ответ с результатами микроскопического исследования следует выдавать как можно быстрее, желательно - не позже чем через 24 часа после получения проб.

В бланке ответа на микроскопическое исследование должны содержаться следующие сведения:

- паспортные данные пациента;

- наименование учреждения исполнителя;

- наименование учреждения отправителя;

- материал;

- использованный метод окраски и микроскопии;

- среднее количество кислотоустойчивых микобактерий в мазке;

- выявление больших скоплений микроорганизмов, что может свидетельствовать о гораздо большем количестве бактерий, чем указано в заключении;

- дата исследования и фамилия сотрудника, проводившего анализ.

Результат следует отправлять в медицинское учреждение, приславшее пробы.

НИКОГДА НЕ ОГРАНИЧИВАЙТЕСЬ ВЫДАЧЕЙ РЕЗУЛЬТАТА ПАЦИЕНТУ!

3.8. Контроль качества микроскопических исследований

для выявления кислотоустойчивых микобактерий

Целью введения контроля качества является обеспечение условий проведения исследований, при которых достигается чувствительность и специфичность метода, заложенные в его характеристику.

Контроль качества лабораторных исследований осуществляется в нескольких формах:

- внутрилабораторный контроль качества выполняемых исследований;

- внешний контроль качества микроскопических и культуральных лабораторных исследований, включающий:

заочную оценку качества с использованием аттестованных контрольных образцов;

повторный анализ клинических образцов и препаратов в лабораториях более высокого уровня;

инспекционный контроль, осуществляемый в рамках лицензирования и аккредитации, в том числе кураторские визиты.

3.8.1. Внутрилабораторное обеспечение качества микроскопических исследований

Важным элементом обеспечения качества выполняемых исследований является регулярное осуществление внутрилабораторного контроля качества микроскопических исследований, который позволяет осуществлять эффективное и систематическое наблюдение за проводимой в лаборатории работой.

Контроль качества осуществляется на всех технологических этапах микроскопического исследования:

- оценки качества поступающих проб;

- контроля за соблюдением рецептуры и методики приготовления реагентов и красителей;

- правил и сроков хранения реагентов и красителей;

- наблюдения за неукоснительным соблюдением методических приемов при:

приготовлении мазков (включая качество предметных стекол);

окраске мазков;

проведении микроскопического исследования;

- регулярного контроля качества используемых химических реактивов и сроков хранения, исправности оборудования;

- периодического контроля результатов бактериоскопии;

- проверки правильности учета и регистрации результатов.

Кроме того, элементом внутрилабораторного контроля качества является проверка правильности:

- организации рабочих мест (приема и регистрации материала, приготовления и окраски мазков, микроскопирования);

- настройки оборудования;

- микроскопирования положительных и отрицательных контрольных образцов;

- своевременности и точности передачи результатов в учреждение, направившее материал для исследования.





Успех применения контроля качества обеспечивается:

- регулярным его применением в лабораторном подразделении;

- правильно обученными, заинтересованными и ответственными работниками;

- рациональным применением регламентированных методов;

- анализом допущенных ошибок и немедленным их исправлением.

Одной из форм обеспечения качества бактериоскопических исследований является использование в ряду клинических мазков двух дополнительных неокрашенных контрольных мазков, один из которых заведомо является положительным, а второй - отрицательным мазком. Просмотр мазков начинают с контрольных, затем просматривают клинические мазки.

Необходимо еженедельно и ежемесячно обобщать и анализировать полученные данные для определения процента положительных результатов и, по возможности, определять причины любых резких отклонений от средних показателей. При получении в процессе микроскопии подряд нескольких положительных результатов необходимо внимательно проанализировать причины этого.

ЗА ОБЕСПЕЧЕНИЕ КАЧЕСТВА ИССЛЕДОВАНИЙ НЕСУТ ОТВЕТСТВЕННОСТЬ ВСЕ СОТРУДНИКИ ЛАБОРАТОРИИ.

3.8.2. Внешняя оценка качества микроскопических исследований с использованием контрольных образцов

На территории Российской Федерации функционирует Федеральная система внешней оценки качества (ФСВОК) клинических лабораторных исследований, которая контролирует клинико-диагностические и бактериологические лаборатории путем заочной оценки качества с использованием контрольных образцов совместно с Федеральной и региональными референс-лабораториями противотуберкулезной службы МЗ РФ.

Деятельность системы основана на регулярной проверке правильности выполняемых лабораторией исследований и предоставлении информации о результатах оценки их качества. Участие в ФСВОК является одним из основных и обязательных видов деятельности клинико-диагностических и бактериологических лабораторий по обеспечению требуемого качества выполняемых исследований.

Внешняя оценка качества клинических лабораторных исследований позволяет своевременно выявить недостатки в работе клинико-диагностических подразделений, оказать организационно-методическую и консультативную помощь участвующим в ФСВОК лабораториям, выработать адекватные рекомендации по устранению обнаруживаемых ошибок и совершенствованию используемых методик.

Внешнюю оценку качества микроскопических исследований для выявления кислотоустойчивых микобактерий осуществляют совместно с Центром внешнего контроля качества клинических лабораторных исследований МЗ РФ Федеральная и региональные референс-лаборатории противотуберкулезной службы.

3.8.3. Повторный анализ клинических образцов и препаратов в лабораториях более высокого уровня

Определенная доля исследованных и сохраненных мазков подвергается повторному анализу в курирующих лабораториях по установленным правилам.

Лаборатория должна соблюдать правильность хранения препаратов, обеспечивая их целостность и исходное качество, при котором получен результат. Препараты должны сопровождаться соответствующими документами. Обычно реанализу подвергают все положительные мазки и каждый десятый отрицательный.

3.8.4. Инспекционный контроль качества микроскопических исследований

Инспекционный контроль (кураторские визиты) осуществляется с целью проведения текущей оценки основных показателей работы лабораторий и проверки достоверности получаемых в них результатов микроскопических исследований путем очной проверки деятельности лабораторий при их посещении представителями лицензирующего органа и курирующей лаборатории.

Кураторские визиты являются наиболее эффективными методами оперативного контроля качества лабораторной диагностики. План проведения кураторских визитов и основные разделы работы лаборатории, подлежащие проверке, определяются заранее.

3.9. Организация и управление работой лаборатории.

Общие правила безопасности при организации исследований

В связи с высокой трансмиссивностью микобактерий туберкулеза и, как следствие, с высоким риском заболевания среди сотрудников микробиологических подразделений устройство лаборатории, расположение и организация рабочих мест должны предотвращать как развитие внутрибольничной туберкулезной инфекции, так и контаминацию рабочих мест, а также обеспечивать необходимые меры биологической безопасности при работе персонала с возбудителем туберкулеза, исключения физических и химических рисков при работе в лаборатории.

Необходимые мероприятия должны включать (см. раздел 3 настоящей Инструкции):

а) административные меры, предотвращающие распространение инфекционных аэрозолей из загрязненных зон в неинфицированные помещения лаборатории и лечебного учреждения в целом;

б) инженерные (проектные и технические) мероприятия, направленные на снижение концентрации инфекционных аэрозолей в воздухе (принудительная вентиляция, использование специализированных устройств обеззараживания воздуха);

в) меры персональной защиты персонала (защитные маски, респираторы, одежда, перчатки).

Во время работы двери в лабораторию должны быть закрыты. Расположение рабочих зон, оборудования и реагентов должно быть постоянным и логичным - в соответствии с последовательностью выполнения работы и соблюдением эпидемиологической цепочки. Рабочие помещения должны содержаться в чистоте и обеззараживаться бактерицидными лампами (не менее 40 минут перед началом работы и в конце рабочего дня). Столы должны протираться раствором соответствующего дезинфицирующего средства (например, 5% раствором хлорамина) <*> два раза в день - перед началом работы и после ее окончания. Эффективность ультрафиолетовых облучателей зависит от влажности и степени загрязненности воздуха и рабочих поверхностей, что необходимо учитывать при проведении санитарных гигиенических мероприятий в лаборатории.

--------------------------------

<*> Дезинфицирующие средства, используемые в лабораториях в противотуберкулезных целях, содержат фенолы, гипохлориты, спирт, формальдегиды, йодофоры и глутаральдегиды. Тип дезинфицирующего вещества зависит от материала, подлежащего дезинфекции. Не следует пользоваться ароматизированными "антисептиками". Неверно распространенное мнение о том, что дезинфицирующие средства, эффективные против различных видов микроорганизмов, столь же эффективны и против микобактерий. Целый ряд распространенных дезинфектантов обладают незначительной или не обладают вовсе микобактерицидной активностью, а средства на основе четвертичного аммония неэффективны в рекомендуемых концентрациях. Перекиси водорода в низких концентрациях (менее 3% также мало эффективны в отношении микобактерий туберкулеза).

Помещения лаборатории должны быть удобными в расположении, не иметь порогов и функционально пригодными для предназначенных работ.

У каждого рабочего места должны быть вывешены методические инструкции по проведению выполняемых на этом месте рабочих процедур. Все манипуляции на каждом рабочем месте должны выполняться в строгом соответствии с инструкцией. Любые изменения вносятся в эти документы только по указанию заведующего лабораторией и должны быть завизированы его подписью с указанием даты изменения методики.

Все документы должны храниться в течение 2 лет.

В работе должны использоваться методы лабораторных исследований, которые регламентированы в нормативных документах и зарегистрированы в реестре Минздрава РФ.

Лабораторное оборудование

Оборудование должно полностью удовлетворять стандартным требованиям и спецификациям.

Технические паспорта всего оборудования и инструкции по применению оборудования и уходу за ним необходимо хранить в специальной папке.

Для обеспечения точности и правильности работы оборудование должно регулярно проверяться специалистом соответствующего профиля.

Для регистрации профилактических осмотров всего оборудования следует иметь отдельный журнал.

В случае возникновения неисправности в работе того или иного прибора работа на нем немедленно прекращается. И прибор консервируется до прихода специалиста по ремонту и эксплуатации данного прибора.

Правила хранения и эксплуатации микроскопов

Срок службы микроскопа рассчитан на 10 лет с учетом естественного старения. Микроскоп является точным и дорогостоящим прибором, поэтому требует очень бережного обращения как с механической его частью, так и с оптикой. При этом вовсе не обязательно знать устройство и работу микроскопа в деталях - этим должны заниматься профессионалы. Однако иметь представление о правилах настройки и работы с микроскопом и хранении необходимо работникам лаборатории.

Технические правила эксплуатации прилагаются к микроскопу.

Если микроскоп временно не используется, его следует хранить в футляре или накрывать пластиковым чехлом.

Повышенная влажность воздуха помещения может способствовать размножению на линзах плесневых грибов и появлению ржавчины на металлических частях прибора. Для снижения влажности воздуха в футляр микроскопа следует поместить чашку Петри с цветным силикагелем (имеет голубой цвет). Когда силикагель насытится влагой, его цвет изменится с голубого на розовый. В таком случае силикагель можно заменить новым или дегидратировать его в сухожаровом шкафу. После восстановления первоначального цвета силикагель можно использовать повторно.

Для удаления налета плесневых грибов с линз объектива используется тампон, смоченный в растворе противогрибкового препарата. При необходимости такую обработку можно повторить, а затем насухо протереть линзы специальной мягкой тканью. Линзы окуляров не протирают растворителями.

Нельзя хранить микроскоп поблизости от химических реактивов и кислот, а также в помещениях или местах с высокой влажностью.

При переноске микроскопа следует держать его двумя руками - за штатив и за основание. Нельзя переносить микроскоп, держа его только одной рукой. Следует избегать необоснованно частых передвижений микроскопа.

Микроскоп следует устанавливать на прочной ровной поверхности. В непосредственной близости от него нельзя устанавливать оборудование, вызывающее вибрацию (например, центрифуги).

Если микроскоп используется каждый день, желательно держать его на одном постоянном месте, накрывая после работы полиэтиленовым или пластиковым чехлом.

На линзах микроскопа от грязи или песчинок могут появиться царапины. Объективы и окуляры протираются только специальной мягкой тканью для линз или безворсовыми салфеткой или тампоном.

Не следует допускать попадания иммерсионного масла на предметный столик микроскопа. Во избежание контаминации мазков в процессе микроскопического исследования и получения ложноположительных результатов после просмотра каждого очередного препарата следует тщательно вытирать объектив от иммерсионного масла.

Необходимо следить, чтобы иммерсионное масло не попадало на неиспользуемые объективы, находящиеся в револьвере микроскопа. При случайном загрязнении необходимо сразу же тщательно их вытереть.

Нельзя разбирать микроскоп; в случае появления какой-либо неисправности ремонт должен производиться только специалистом.

Для сохранения микроскопа в рабочем состоянии необходимо соблюдать следующие правила:

После использования в течение рабочего дня необходимо:

- проверить фиксацию объективов в револьверном устройстве;

- удалить с помощью ксилола, спирто-эфирной смеси или 70° спирта масло с объектива, конденсора и предметного столика;

- несколько приподнять предметный столик, не допуская соприкосновения с ним объективов, но в то же время и не оставляя их на длительное время в верхнем положении;

- установить регулятор напряжения на минимальное значение;

- выключить источник света;

- накрыть микроскоп чехлом.

Так как основными загрязнителями оптической системы микроскопов и наиболее частой причиной их выхода из строя являются пыль и грибы, во внерабочем состоянии микроскоп всегда должен быть накрыт чехлом и храниться в сухом помещении.

Для сохранности иммерсионных объективов следует обратить особое внимание на правильное выполнение их очистки от остатков иммерсионного масла. Очистку объектива рекомендуется производить следующим образом:

- вывинтить объектив из револьверного устройства или установить его в положение, удобное для чистки;

- сухой салфеткой одним движением руки снять иммерсионное масло с передней линзы объектива;

- смочить другую салфетку в смеси спирта и эфира с таким расчетом, чтобы она была слегка увлажненной;

- аккуратно протереть линзу объектива; при сильном загрязнении операцию можно повторить, используя чистый вновь смоченный тампон;

- по окончании очистки линзу протирают сухим тампоном.

Операции очистки следует проводить очень аккуратно и осторожно; необходимо следить за степенью увлажненности салфетки; она должна быть слегка увлажнена растворителем.

Ежемесячно необходимо:

- удалить пыль с корпуса микроскопа специальной щеткой с подачей воздуха (простое устройство может быть сделано из пастеровской пипетки и прикрепленной к ней резиновой груши);

- очистить объективы, окуляры и конденсоры тампоном или кусочком специальной ткани, смоченной ксилолом, спирто-эфирной смесью или спиртом;

- снять с предметного столика препаратоводитель предметных стекол и очистить его;

- протереть влажной тканью отверстие источника света в основании микроскопа.

Через каждые 6 месяцев микроскоп должен подвергаться профилактическому осмотру, чистке и смазке, которые проводятся специалистом.

Исследуемый материал и бланки исследований

Микроскопическое исследование производится только при наличии письменного направления на исследование от уполномоченных лиц.

По устной просьбе, не подтвержденной получением соответствующих документов, исследования не проводятся.

Бланки направлений на исследование хранятся отдельно от полученного материала. Загрязненные бланки перед регистрацией в лабораторном журнале стерилизуются в сухожаровом шкафу или (при отсутствии шкафа) проглаживаются горячим утюгом.

Бланки направлений должны быть правильно оформлены, а каждая полученная проба диагностического материала правильно промаркирована. Не следует производить исследование безымянных проб или проб с неправильно оформленными направлениями.

При регистрации необходимо оценить качество пробы, чтобы отобрать и отделить пробы, содержащие слюну. Ответ может быть сформулирован следующим образом: "Поступившая проба похожа на слюну. Рекомендуется повторить сбор мокроты". Диагностический материал в виде слюны может быть исследован только при прямом назначении врача в исключительных случаях, когда другой диагностический материал не может быть собран.

Для сокращения затрат времени на оформление ответов можно использовать резиновые штампы со стандартными формулировками.

Протекшие или поврежденные флаконы с материалом следует немедленно удалить, подвергнуть автоклавированию и запросить новую (повторную) пробу.

На бланке направления на исследование необходимо отметить время доставки материала в лабораторию и фиксировать любые задержки в поступлении проб, что имеет особое значение при отрицательных результатах.

Следует указывать примерный объем полученной для исследования пробы мокроты.

Реактивы и красители

Все флаконы с реактивами и красителями заводского производства должны иметь отметку о дате получения и вскрытия заводской упаковки. Любые некачественные материалы следует специально помечать и немедленно удалять из лаборатории.

В лаборатории или на складе следует иметь запас реактивов и расходных материалов на 6 месяцев работы.

Необходимо регулярно контролировать сроки годности препаратов и реактивов и обновлять запасы, чтобы не было материалов с истекшим сроком хранения.

Окрашивание и исследование мазка

При окраске мазков не следует помещать на штатив ("рельсы") и окрашивать одновременно более 12 стекол. Соприкосновение стекол боковыми краями может привести к переносу краски и микобактерий с одного стекла на соседние.

В процессе окраски мазков при их промывании проточной водой не следует пользоваться резиновыми трубками или наконечниками для направления струи воды на препарат. В окружающей среде и водопроводной воде содержится значительное количество кислотоустойчивых сапрофитов, которые легко размножаются на резиновых поверхностях в условиях повышенной влажности. Во время промывания мазков при прохождении струи воды через загрязненные микобактериями резиновые трубки или наконечники микобактерии могут попасть на препарат и обусловить ложноположительный результат анализа.

В число исследуемых мазков, подлежащих окрашиванию, необходимо ежедневно включать контрольные неокрашенные положительный и отрицательный препараты. Вначале микроскопируют контрольные мазки, а затем - мазки от больных.

Окрашенные для исследования мазки непригодны, если:

При окраске карболовым фуксином:

- в положительном контрольном мазке микобактерии не окрашены в красный цвет;

- в отрицательном контрольном мазке после обесцвечивания видны красные клетки;

- не произошло достаточного обесцвечивания фона.

При окраске флюорохромными красителями:

- отрицательные контрольные мазки дают флюоресцирующее свечение;

- в положительных контрольных мазках не обнаруживаются светящиеся микобактерии или они дают тусклую флюоресценцию;

- фон недостаточно обесцветился или имеет флюоресцентное свечение.

По окончании микроскопического исследования необходимо:

- с помощью ксилола, спирт-эфирной смеси или спирта удалить с препарата иммерсионное масло и поместить препараты в отдельные коробки, где они сохраняются для последующего проведения внешнего контроля качества или перепроверки результата микроскопии;

- не следует очищать стекло слишком энергично, чтобы не повредить препарат и не удалить с него краску;

- все положительные и отрицательные мазки необходимо укладывать в отдельные коробки для сохранения в том порядке, в котором проводилось исследование, чтобы в дальнейшем можно было провести внешний контроль качества в соответствии с установленным порядком.

Выдача ответов и администрирование

Результаты микроскопического исследования следует передавать в медицинское учреждение или непосредственно врачу, направившему материал на исследование.

Результаты бактериоскопии следует отсылать как можно быстрее - желательно в течение 24 часов с момента получения проб мокроты.

Необходимо еженедельно и ежемесячно обобщать и анализировать полученные данные для ведения статистики исследований.

IV. КУЛЬТУРАЛЬНЫЕ МЕТОДЫ ИССЛЕДОВАНИЯ МИКОБАКТЕРИЙ

КОМПЛЕКСА М.TUBERCULOSIS

Поступивший в лабораторию материал перед обработкой и посевом должен быть зарегистрирован в лабораторном регистрационном журнале. Каждой пробе материала необходимо присвоить порядковый регистрационный лабораторный номер, который должен использоваться при всех последующих лабораторных исследованиях.

4.1. Принципы предпосевной обработки

диагностического материала

Обычные микробиологические методики для выделения чистых культур возбудителей не могут быть использованы при проведении бактериологических исследований на туберкулез. Это объясняется тем, что микобактерии туберкулеза очень требовательны к составу питательной среды. Их рост происходит очень медленно и зависит от соблюдения ряда условий. Колонии микобактерий, видимые невооруженным глазом, появляются через 3 - 6 недель. В связи с этим во избежание высыхания питательной среды для посевов обычно применяют бактериологические пробирки с герметичными пробками (резиновые, силиконовые) или производят парафинирование ватно-марлевых пробок.

Большинство проб клинического материала, поступающего в микробиологическую лабораторию для культурального исследования на туберкулез, в различной степени загрязнены быстрорастущими бактериями, бурный рост которых на богатых питательных средах мешает развитию микобактерий и затрудняет их выделение. Поэтому перед посевом на питательную среду диагностический материал подвергают специальной обработке, обеспечивающей деконтаминацию (обеззараживание), то есть гибель гноеродной и гнилостной микрофлоры.

Микобактерии туберкулеза, выделяющиеся из дыхательных путей больного, как правило, окружены большим количеством слизистых веществ, затрудняющих их выделение. В связи с этим мокроту и другие сходные материалы перед посевом подвергают разжижению и гомогенизации.

Все препараты, используемые в настоящее время для разжижения и деконтаминации диагностического материала, обладают более или менее выраженной токсичностью в отношении микобактерий. Чтобы обеспечить выживание достаточной части микобактериальной популяции, необходимо использовать щадящие методы обработки, позволяющие, с одной стороны, подавить быстрорастущие гноеродные и гнилостные микроорганизмы, а с другой - максимально сохранить жизнеспособность присутствующих в материале микобактерий.

Частота контаминации посевов в лабораториях, проводящих исследование свежесобранных проб, при культивировании мокроты на плотных яичных средах обычно составляет 2 - 3%. Если клинический материал до поступления и лабораторию хранится в течение нескольких дней в нерегламентированных условиях, частота контаминации может достигать 5% и более, что недопустимо. Контаминация менее 2% свидетельствует о нарушениях режима обработки материала. Для унификации результатов исследования необходимо, чтобы микробиологические лаборатории использовали для гомогенизации и деконтаминации диагностического материала один из стандартных методов, изложенных ниже.

4.1.1. Стандартные методы разжижения и деконтаминации

Перед посевом исследуемый материал необходимо гомогенизировать и освободить от сопутствующей гноеродной и гнилостной микрофлоры. Для этого мокроту, экссудаты и другой негомогенный материал собирают в стерильные флаконы со стеклянными бусами или битым стеклом, добавляют щелочь или кислоту и подвергают встряхиванию.

ВСЕ ПРОЦЕДУРЫ ПО ПЕРЕНОСУ МАТЕРИАЛА ИЗ ОДНОЙ ПОСУДЫ В ДРУГУЮ ПРИ ОБРАБОТКЕ И ПОСЕВЕ ПРОИЗВОДЯТСЯ ТОЛЬКО СТЕРИЛЬНЫМИ ПИПЕТКАМИ. ЗАПРЕЩАЕТСЯ ПЕРЕНОС МАТЕРИАЛА ПУТЕМ ПЕРЕЛИВАНИЯ ЕГО ЧЕРЕЗ КРАЙ ФЛАКОНОВ, ПРОБИРОК И ПР.

Жидкие материалы предварительно центрифугируют и обработке подвергают только осадок.

Все реактивы, используемые при приготовлении растворов для обработки диагностических материалов, должны иметь степень очистки не менее категории "химически чистый" (ХЧ). Могут использоваться как отечественные, так и импортные реактивы, имеющие степень очистки не менее чем "химически чистый".

Для предпосевной обработки диагностического материала рекомендуется использовать следующие методы и детергенты.

4.1.1.1. Обработка материала 10% раствором трехзамещенного фосфорнокислого натрия

Трехзамещенный фосфорнокислый натрий (Na3PO4) хорошо подавляет сопутствующую флору и даже при 2 - 3-дневном хранении материала при +4 °C не повреждает микобактерии и мало влияет на их способность к росту на питательных средах.

1. Исследуемый материал, находящийся в стерильном флаконе с 6 - 8 стеклянными бусинами или битым стеклом, залить равным объемом 10% трехзамещенного фосфата натрия и поместить на 10 мин. во встряхиватель.

2. Флакон с материалом поместить на 18 - 20 часов в термостат при 37 °C.

3. После этого материал стерильной пипеткой объемом 5 - 10 мл перенести в пробирки, уравновесить их и центрифугировать при 3000 x g <*> в течение 15 минут. При указанном режиме происходит осаждение 95% присутствующих в материале микобактерий.

--------------------------------

<*> Ускорение центрифугирования ("относительная сила центрифугирования" (ОСЦ)) измеряется в относительных единицах к ускорению свободного падения "g". Формула расчета ОСЦ:

2

ОСЦ = 1,12Rmax (об./мин./1000),

где: Rmax - максимальный радиус от центра вращения ротора до дна пробирки в мм.

Например, при R = 180 мм и 1500 об./мин. (центрифуга ЦЛ1-3) ОСЦ = 450g. При увеличении частоты вращения до 3000 об./мин. ОСЦ возрастает до 1800g. Необходимое число оборотов в мин. можно рассчитать по формуле:

-1 ----------------

Об.мин. = 1000 \/ОСЦ / (1,12Rmax).

4. Надосадочную жидкость отобрать стерильной пипеткой на 10 - 5 мл и перенести ее в емкость с дезинфицирующим раствором, оставив в каждой пробирке 1,2 - 1,5 мл осадка.

5. Использованную пипетку опустить в емкость с дезинфицирующим раствором.

6. К осадку стерильно добавить несколько капель 6% соляной кислоты до получения нейтрального значения pH, определяемого индикаторной бумажной полоской.

7. Встряхнуть пробирку с осадком и поместить ее в штатив в порядке регистрационных номеров материала.

8. Для снижения токсичного воздействия на микобактерии различных остатков веществ (в том числе возможных химиопрепаратов) вводят еще одну процедуру отмывки 10 - 15 мл дистиллированной воды.

Супернатант удаляют, а осадок в объеме 0,8 - 1,0 мл готовят к инокулированию и приготовлению мазка.

Далее см. разделы 4.3.1. Процедура посева и 4.3.2. Инкубация и др.

Реактивы.

Трехзамещенный фосфорнокислый натрий (Na3PO4) - ГОСТ 4274-76;

Кислота соляная (HCl) концентрированная - ГОСТ 3118-77;

Бумага индикаторная универсальная - ТУ 6-09-1181-76.

Приготовление растворов.

1. 100 г трехзамещенного фосфата натрия растворяют в 800 мл дистиллированной воды и доводят объем раствора до 1 л.

2. 6 мл концентрированной соляной кислоты добавляют к 94 мл дистиллированной воды.

НИКОГДА НЕ ДОБАВЛЯТЬ ВОДУ В КИСЛОТУ!

4.1.1.2. Обработка материала 3% серной кислотой

ОБЩЕЕ ВРЕМЯ ОБРАБОТКИ КИСЛОТОЙ НЕ ДОЛЖНО ПРЕВЫШАТЬ 20 МИН.!

Несмотря на то, что микобактерии туберкулеза не теряют жизнеспособности в сильно закисленной среде, необходимо помнить, что длительная экспозиция материала в растворе серной кислоты губительно действует на микобактерии. Поэтому раствором серной кислоты производят обработку материала, содержащего большое количество сопутствующей микрофлоры. Этот метод рекомендован для обработки мочи, гнойных экссудатов и отделяемого ран, резецированных тканей, органов экспериментальных животных и пр.

При обработке 3% раствором серной кислоты рекомендуется следующий порядок манипуляций:

1. Для работы правильно собранный материал (60 - 100 мл) используют целиком для получения осадка, так как микобактерии, имея удельный вес, близкий к 1,0, могут подолгу не оседать, находясь во взвешенном состоянии.

2. Из этого материала методом наслоения поэтапным центрифугированием получить осадок. Для этого перенести в 1 - 2 центрифужные пробирки приблизительно по 15 - 20 мл материала.

3. Уравновесить пробирки и центрифугировать материал при 3000 x g в течение 15 мин.

4. Надосадочную жидкость отобрать пипеткой на 10 - 5 мл и перенести ее в емкость с дезинфицирующим раствором, оставив в каждой пробирке 0,8 - 1,2 мл осадка.

5. Полученные в разных пробирках осадки одного и того же материала с помощью той же стерильной пипетки перенести в одну пробирку, плотно закрыть ее пробкой и встряхнуть.

6. Использованную пипетку опустить в емкость с дезинфицирующим раствором.

7. К полученному осадку добавить равный объем 3% раствора серной кислоты.

8. Выдержать полученную с кислотой смесь 10 мин. при комнатной температуре (не превышать время экспозиции!).

9. Центрифугировать смесь при 3000g в течение 10 мин. (не превышать время экспозиции!).

10. Стерильной пипеткой на 5 - 10 мл отобрать надосадочную жидкость и перенести ее в емкость с дезинфицирующим раствором, оставив приблизительно 0,8 - 1,2 мл осадка.

11. К осадку добавить стерильной пипеткой 15 мл стерильного 0,9% раствора хлористого натрия.

12. Пробирки уравновесить и повторно центрифугировать материал при 3000g в течение 15 мин.

13. Стерильной пипеткой на 5 - 10 мл отобрать надосадочную жидкость и перенести ее в емкость с дезинфицирующим раствором, оставив приблизительно 1,5 мл осадка.

14. Добавить в пробирку 1 - 2 капли 4% едкого натра до получения нейтрального значения pH, определяемого индикаторной бумажной полоской.

15. Встряхнуть пробирку с осадком и поместить в штатив, расположив ее по порядку регистрационных номеров материала.

Далее см. разделы 4.3.1. Процедура посева и 4.3.2. Инкубация и др.

Реактивы:

1. Серная кислота (H2SO4) концентрированная - ГОСТ 4204-77.

2. Едкий натр (NaOH) - ГОСТ 4328-77.

Приготовление растворов

1. 3% раствор серной кислоты. К 97 мл дистиллированной воды добавляют 3 мл концентрированной серной кислоты, осторожно наслаивая ее по стенкам сосуда.

ВНИМАНИЕ! КИСЛОТУ СЛЕДУЕТ ДОБАВЛЯТЬ В ВОДУ, А НЕ НАОБОРОТ!

НЕ ПИПЕТИРУЙТЕ КОНЦЕНТРИРОВАННУЮ СЕРНУЮ КИСЛОТУ РТОМ!

2. 4% раствор едкого натра. 40 г NaOH заливают дистиллированной водой до объема 1 литр.

Обработка материала 4% раствором едкого натра

(модифицированный метод Петрова)

ОБЩЕЕ ВРЕМЯ ОБРАБОТКИ МАТЕРИАЛА ЩЕЛОЧЬЮ НЕ ДОЛЖНО ПРЕВЫШАТЬ 40 МИН.!

Обработка с помощью NaOH является достаточно жесткой и может приводить к гибели до 60% микобактерий, содержащихся в исследуемом образце материала. Данный показатель не зависит от дополнительной гибели бактерий за счет повышенной температуры при центрифугировании и других факторов.

Гидроокись натрия токсична по отношению как к загрязняющим микроорганизмам, так и к микобактериям туберкулеза.

Поэтому при использовании данного метода необходимо строго соблюдать указанное время обработки.

1. Исследуемый материал, находящийся в стерильном флаконе с 6 - 8 стеклянными бусинами или битым стеклом, залить двойным объемом 4% раствора едкого натра и поместить на 10 мин. во встряхиватель.

2. Выдержать полученную со щелочью смесь 15 мин. при комнатной температуре с периодическим ручным встряхиванием (не превышать время экспозиции!).

3. Стерильной пипеткой объемом 5 - 10 мл перенести обработанный материал в пробирки.

4. Пробирки уравновесить и центрифугировать материал при 3000g в течение 15 мин.

5. Стерильной пипеткой объемом 5 - 10 мл перенести надосадочную жидкость в емкость с дезинфицирующим раствором, оставив в пробирке 0,8 - 1,2 мл осадка.

6. К осадку добавить стерильной пипеткой 15 мл стерильного 0,9% раствора хлористого натрия.

7. Пробирки уравновесить и повторно центрифугировать материал при 3000g в течение 15 мин.

8. Стерильной пипеткой объемом 5 - 10 мл перенести надосадочную жидкость в емкость с дезинфицирующим раствором, оставив в пробирке 1,2 - 1,5 мл осадка.

9. К осадку добавить 1 - 2 капли 10% раствора соляной кислоты до получения нейтрального значения pH, определяемого индикаторной бумажной полоской.

10. Закрыть пробирку и встряхнуть ее содержимое.

11. Пробирку с осадком поместить в штатив, расположив ее по порядку регистрационных номеров материала.

Реактивы.

1. Едкий натр (NaOH) - ГОСТ 4328-77.

2. Кислота соляная (HCl) концентрированная - ГОСТ 3118-77.

Приготовление растворов.

1. 4% раствор едкого натра. 40 г едкого натра заливают дистиллированной водой до объема 1 литр.

2. 10% раствор соляной кислоты. 10 мл концентрированной соляной кислоты добавляют к 90 мл дистиллированной воды.

Растворы стерилизуют 20 мин. при 1 атмосфере.

4.1.2. Альтернативные методы обработки материала

В регионах с достаточными материальными ресурсами могут применяться более дорогие и трудоемкие методы гомогенизации и деконтаминации (Kent Р.Т., Kubica G.P. Public Health Mycobacteriology: A Guide for the Level III Laboratory. US Department of Health and Human Services, Centers for Disease Control, USA, 1985). К ним относятся следующие методы:

4.1.2.1. Метод с использованием N-ацетил-l-цистеина и гидроокиси натрия (NALC-NaOH)*

Применение муколитического препарата NALC, используемого для быстрого разжижения мокроты, позволяет снизить концентрацию деконтаминирующего вещества (NaOH) до конечной концентрации 1%. Цитрат натрия включен в литическую смесь для связывания ионов тяжелых металлов, которые могут присутствовать в пробе и инактивировать действие N-ацетил-L-цистеина. Этот метод дает больший выход высеваемости микобактерий, однако требует больше затрат времени и средств.

4.1.2.2. Метод с использованием 5% щавелевой кислоты или 4% серной кислоты

Иногда лабораторным работникам приходится сталкиваться с чрезмерно высокой контаминацией некоторых проб. Это создает большие сложности в работе. В таких случаях можно применить более жесткие методы деконтаминации с использованием 5% щавелевой кислоты или 4 - 6% серной кислоты.

Эти методы нередко дают хорошие результаты в тех случаях, когда пробы мокроты оказываются массивно загрязненными Pseudomonas sp. и другими грамотрицательными микроорганизмами.

Процедура обработки соответствует обработке 3% раствором серной кислоты (см. выше).

4.2. Материалы, не нуждающиеся в деконтаминации

Следующие биологические жидкости и ткани не нуждаются в деконтаминации, если они были взяты в стерильные флаконы с соблюдением правил асептики:

- спинномозговая, синовиальная и другие жидкости из закрытых полостей;

- костный мозг;

- гной из "холодных" абсцессов;

- резецированные ткани (за исключением материала аутопсии);

- пунктаты печени и лимфатических узлов, а также материалы биопсий (при отсутствии свища).

Если возникают сомнения в контаминации образцов, можно провести посев части пробы без какой-либо предварительной обработки на неселективную питательную среду (например, на простой питательный агар или сахарный бульон) и инкубировать в течение 24 часов для того, чтобы проконтролировать наличие в образце сопутствующих гноеродных или гнилостных бактерий (не микобактерий). Остальную часть пробы хранят без какой-либо обработки в холодильнике до тех пор, пока не будет подтверждено отсутствие контаминирующих бактерий. Если при этом будет установлен факт контаминации, оставшуюся часть пробы можно деконтаминировать одним из описанных выше методов.

4.3. Техника посева и инкубации, оценка и учет результатов

Достоверная клиническая интерпретация результатов микробиологического обследования достигается при обязательном соблюдении следующего правила:

Микроскопическое и культуральное исследования должны производиться параллельно только из одной и той же пробы диагностического материала.

4.3.1. Процедура посева

Рабочее место микробиолога организуется таким образом, чтобы исключить операторские ошибки.

Перед процедурой посева необходимо подготовить пробирки с питательными средами, пронумеровать их согласно нумерации анализов и последовательно расположить в вертикальном штативе. Аналогичным образом подготовить и пронумеровать предметные стекла для приготовления мазков.

Перед началом забора посевного материала пипеткой убедиться в том, что номер пробирки с посевным материалом соответствует номерам пробирок с питательной средой и номеру предметного стекла для приготовления мазка.

Проверяют соответствие расположения пробирок с готовым осадком и предметных стекол в порядке их регистрационных номеров:

- набрать стерильной мерной или пастеровской пипеткой 1,0 - 1,2 мл полученного после обработки и нейтрализации осадка, оставив приблизительно 0,2 мл для последующего приготовления мазка для микроскопии;

- соблюдая условия стерильности, внести равные объемы набранного материала (примерно по 0,5 - 0,6 мл) в 2 пробирки с разными плотными питательными средами;

- пробирки с питательной средой при посеве должны находиться в наклонном положении (под углом 40 - 45°);

- посевной материал нанести на верхнюю треть косяка питательной среды;

- засеянные пробирки закрыть ватно-марлевыми пробками и поместить в наклонном положении в штатив таким образом, чтобы посевной материал равномерно распределился по всей поверхности косяка питательной среды; можно использовать дренированные (с продетым льняным или хлопчатобумажным шнуром) силиконовые пробки соответствующего диаметра;

- остаток осадка забрать той же пипеткой и нанести на подготовленное и пронумерованное предметное стекло 1 - 2 капли осадка для получения мазка;

- использованную пипетку опустить в емкость с дезинфицирующим раствором;

- по завершении посева всех проб засеянные пробирки переместить в горизонтальные штативы - "диваны" и поместить в термостат при температуре 37 °C; при этом поверхность косяка питательной среды должна находиться в горизонтальной плоскости, а наклон штатива должен исключить смачивание пробки материалом засева. Подготовленные мазки оставляют сушиться на воздухе.

4.3.2. Инкубация

Инкубация микобактерий туберкулеза имеет свои особенности. Они заключаются в том, что микобактерии размножаются чрезвычайно медленно - время деления микробной клетки составляет 18 - 24 часа. Это требует длительного срока инкубации для получения видимого роста колоний. Длительный срок инкубации диктует необходимость соблюдения ряда правил для сохранения жизнеспособности клеток и ростовых свойств питательной среды. Кроме того, микобактерии туберкулеза требовательны к составу питательных сред, составу газовой среды и чувствительны к различным токсическим агентам, которые могут поступать в пробирку или вместе с воздухом, или из некачественной среды, сопровождать процедуры получения осадка. Оптимальная температура инкубации - 37 °C. При снижении температуры скорость размножения микобактерий туберкулеза быстро снижается.

При первичном посеве микроскопически отрицательного материала средняя продолжительность роста микобактерий туберкулеза на плотных питательных средах может составить 20 - 46 дней. Рост отдельных штаммов появляется через 60 и даже 90 дней. Это обусловливает необходимость при отсутствии роста микобактерий для выдачи отрицательного результата выдерживать посевы в термостате до 12 недель.

В процессе инкубации посевов необходимо соблюдать следующее:

- по истечении первых 2 - 3 суток инкубации ватно-марлевые или дренированные силиконовые пробки заменяют герметичными резиновыми или силиконовыми;

- после этого засеянные пробирки переводят в вертикальное положение;

- инкубацию проводят в течение 12 недель при обязательном еженедельном просмотре;

- во время еженедельных просмотров регистрируют следующие параметры для каждой питательной среды:

"появление роста" - срок появления роста, начиная со дня посева;

"интенсивность роста" - суммарное число колониеобразующих единиц (КОЕ) на всех пробирках, засеянных данным материалом, если материал засевается на пробирки с одинаковыми средами (этот показатель имеет большое диагностическое и прогностическое значение, особенно если посевы производятся в динамике наблюдения за больным в процессе химиотерапии). Если инокулируются разные питательные среды, результат отмечается для каждой из них;

"загрязнение посева" неспецифической гноеродной микрофлорой или грибами;

"отсутствие роста".

Все указанные параметры регистрируются в протоколе каждого анализа.

4.4. Питательные среды

Для посева диагностического материала используют разнообразные питательные среды, среди которых можно выделить 3 основные группы:

- плотные питательные среды на яичной основе;

- плотные или полужидкие питательные среды на агаровой основе;

- жидкие синтетические и полусинтетические питательные среды.

Каждая из этих сред имеет положительные и отрицательные особенности.

В связи с этим для повышения результативности культурального метода рекомендуется применять посев диагностического материала одновременно на 2 - 3 питательные среды разного состава.

В России культуральные исследования диагностического материала традиционно осуществляются на плотных яичных средах. Существует большое количество плотных питательных сред, и разные лаборатории используют различные среды: Левенштейна-Йенсена, Петраньяни, Гельберга, Финна, Мордовского (среда "Новая"), Аникина (А-6 и А-9), Попеску и др.

В результате многочисленных сравнительных испытаний установлено, что для культуральной диагностики туберкулеза следует использовать как минимум две разные по составу питательные среды. Наиболее широкое распространение получил набор из 2 яичных сред - Левенштейна-Йенсена и Финна-II.

4.4.1. Среда Левенштейна-Йенсена

Среда Левенштейна-Йенсена применяется во всем мире в качестве стандартной среды для первичного выделения возбудителя туберкулеза и определения его лекарственной чувствительности. Эта среда рекомендуется для использования всеми микробиологическими лабораториями противотуберкулезной службы Российской Федерации для получения сравнимых результатов. Это плотная яичная среда, на которой хороший рост микобактерий туберкулеза получают на 15 - 25-й день после посева микроскопически положительного материала. В состав этой питательной среды входит глицерин, который способствует росту M.tuberculosis. Для культивирования M.bovis среду Левенштейна-Йенсена обогащают 0,5% пируватом натрия, исключив из солевого раствора глицерин. С этой целью в состав солевого раствора вместо глицерина добавляют 8,0 г пирувата натрия. Применение этой модификации среды рекомендуется в тех территориях, где возможно распространение M.bovis.

Реактивы:

Калий однозамещенный фосфорнокислый KH2PO4 - ТУ 6-09-5324-87;

Магний лимоннокислый Mg3(C6H5O7)2 x 14H2O - ТУ 6-09-1770-77;

Магний сернокислый MgSO4 x 7H2O - ГОСТ 4523-77;

L-аспарагин C4H8N2O3 x H2O - импортный реактив;

Глицерин C3H8O3 - ГОСТ 6259-75;

Малахитовый зеленый C52H54O12N4 - ТУ 6-09-1557-77;

Вода дистиллированная - ГОСТ 6709-77.

Состав среды:

Раствор минеральных солей:

Калий однозамещенный фосфорнокислый 2,4 г

Магний сернокислый 0,24 г

Магний лимоннокислый 0,6 г

L-аспарагин 3,6 г

Глицерин 12,0 мл

Вода дистиллированная 600 мл.

Вышеперечисленные ингредиенты растворяют в дистиллированной воде в указанной последовательности при слабом подогревании (не доводя до кипения) на водяной бане. Затем стерилизуют в автоклаве 30 минут при 1 атм. (121 °C). Срок хранения раствора составляет 3 - 4 недели при комнатной температуре.

Раствор малахитового зеленого:

Малахитовый зеленый 2 г

Стерильная дистиллированная вода 100 мл.

Растворить в стерильной дистиллированной воде малахитовый зеленый, поместив раствор в термостат на 1 - 2 часа. Приготовленный раствор не подлежит длительному хранению и при появлении осадка или изменении окраски его следует заменить свежим раствором. Стерилизовать при 1 атм. 30 мин.

Яичная масса.

Свежие диетические куриные яйца со сроком хранения не более 7 суток без трещин и дефектов скорлупы тщательно отмывают в теплой проточной воде с помощью ручных щеток и щелочного мыла, затем оставляют на 30 мин. в мыльном растворе. Тщательно промывают в проточной воде и погружают в 70° этиловый спирт на 30 мин. Затем в стерильном боксе разбивают яйца стерильным ножом в стерильную посуду, доводя общий объем яичной массы до 1 л (для этого требуется в среднем 20 - 25 яиц в зависимости от их величины). Тщательно взбивают стерильным венчиком или в стерильном миксере.

Приготовление среды.

В большую стерильную емкость, соблюдая правила стерильности, помещают следующие растворы:

Раствор минеральных солей 600 мл

Гомогенизированная яичная масса 1000 мл.

Тщательно перемешивают и фильтруют через 4-слойный стерильный марлевый фильтр.

Добавляют 20 мл раствора малахитового зеленого, тщательно перемешивают, избегая образования пены, и в течение не более 15 минут разливают в пробирки приблизительно по 5 мл, следя за тем, чтобы в растворе не сформировался осадок.

Свертывание среды.

Для свертывания среды используются специальные аппараты-свертыватели типа "АСИС". Пробирки с разлитой в них средой помещают в специальные штативы с подобранным углом наклона для формирования косяка среды. Штативы устанавливают в свертыватель и проводят коагуляцию при 85 °C в течение 45 минут. Приготовление питательной среды проводится в условиях соблюдения стерильности, так как свертывание является не стерилизующей, а лишь коагулирующей процедурой.

Качество приготовленной яичной среды зависит от соблюдения температурного и временного режимов коагуляции. Обесцвечивание среды, наличие пузырьков или углублений на ее поверхности свидетельствует о нарушении режима свертывания. Повторное свертывание также ухудшает качество среды. Среды с нарушенным режимом свертывания подлежат удалению.

Проверка на стерильность.

После свертывания каждая вновь приготовленная партия среды подвергается контролю на стерильность. Для этого она помещается в термостат и выдерживается в нем 2 - 3 суток при 37 °C.

Хранение.

Приготовленная партия среды должна иметь дату изготовления и сохраняться в холодильнике при 4 °C с тщательно закрытыми пробками для предотвращения высыхания. Срок хранения среды не должен превышать 4 недели.

4.4.2. Среда Финн-II

Среда Финн-II рекомендована в нашей стране как вторая стандартная среда для выделения микобактерий. Она отличается от среды Левенштейна-Йенсена тем, что вместо L-аспарагина в ней используется глутамат натрия и подбор солей рассчитан таким образом, что конечная кислотность среды (pH = 6,3 - 6,8) имеет более низкое значение и большую стабильность по сравнению со средой Левенштейна-Йенсена. Эти свойства обусловливают более высокую эффективность среды при засеве материала, обработанного щелочными детергентами.

Рост микобактерий появляется на этой среде на несколько дней раньше, чем на среде Левенштейна-Йенсена, а выделение культур на 6 - 8% выше.

Реактивы:

Магний сернокислый MgSO4 x 7H2O - ГОСТ 4523-77;

Натрий лимоннокислый C6H5O7Na3 x 5,5H2O - ГОСТ 22280-86;

Квасцы железоаммонийные Fe(NH4) x (SO4)2 x 12H2O - ГОСТ 4205-77;

Калий однозамещенный фосфорнокислый KH2PO4 - ТУ 6-09-5324-87;

Аммоний лимоннокислый однозамещенный C8H11O7N - ГОСТ 7234-79;

Натрий глутаминовокислый однозамещенный C5H8NNaO4 x H2O - ТУ 6-09-337-70;

Глицерин C3H8O3 - ГОСТ 6259-75;

Малахитовый зеленый - C52H54O12N4 - ТУ 6-09-1557-77;

Вода дистиллированная - ГОСТ 6709-77.

Состав среды:

Раствор минеральных солей:

Магний сернокислый 0,5 г

Натрий лимоннокислый 0,1 г

Квасцы железоаммонийные 0,05 г

Калий однозамещенный фосфорнокислый 20 г

Аммоний лимоннокислый однозамещенный 5 г

Натрий глутаминовокислый однозамещенный 10 г

Глицерин 20 мл

Вода дистиллированная до 1000 мл.

Вышеперечисленные ингредиенты растворяют в дистиллированной воде в указанной последовательности при слабом подогревании (не доводя до кипения) на водяной бане. Кислотность не корригируют. Стерилизуют в автоклаве 30 минут при 1 атм. (121 °C). Срок хранения раствора составляет 3 - 4 недели при комнатной температуре.

Раствор малахитового зеленого:

Малахитовый зеленый 2 г

Стерильная дистиллированная вода 100 мл.

Растворить в стерильной дистиллированной воде малахитовый зеленый, поместив раствор в термостат на 1 - 2 часа. Приготовленный раствор не подлежит длительному хранению и при появлении осадка или при изменении окраски его следует заменить свежим раствором. Стерилизовать при 1 атм. (121 °C) 30 мин.

Яичная масса.

Свежие диетические куриные яйца со сроком хранения не более 7 суток без трещин и дефектов скорлупы тщательно отмывают в теплой проточной воде с помощью ручных щеток и щелочного мыла, затем оставляют на 30 мин. в мыльном растворе. Тщательно промывают в проточной воде и погружают в 70% этиловый спирт на 30 мин. Затем в стерильном боксе разбивают яйца стерильным ножом в стерильную посуду, доводя общий объем яичной массы до 1 л (для этого требуется в среднем 20 - 25 яиц в зависимости от их величины). Тщательно взбивают стерильным венчиком или в стерильном миксере.

Приготовление среды.

В большую стерильную емкость, соблюдая правила стерильности, помещают следующие растворы:

Раствор минеральных солей 600 мл

Гомогенизированная яичная масса 1000 мл.

Тщательно перемешивают и фильтруют через 4-слойный стерильный марлевый фильтр.

Добавляют 20 мл раствора малахитового зеленого, тщательно перемешивают, избегая образования пены, и в течение не более 15 минут разливают в пробирки приблизительно по 5 мл, следя за тем, чтобы в растворе не сформировался осадок.

Свертывание среды.

Для свертывания среды используются специальные аппараты-свертыватели типа "АСИС". Пробирки с разлитой в них средой помещают в специальные штативы с подобранным углом наклона для формирования косяка среды. Штативы устанавливают в свертыватель и проводят коагуляцию при 85 °C в течение 45 минут. Так как приготовление питательной среды проводится в условиях соблюдения стерильности, свертывание является не стерилизующей, а лишь коагулирующей процедурой.

Качество приготовленной яичной среды зависит от соблюдения температурного и временного режимов коагуляции. Обесцвечивание среды, наличие пузырьков или углублений на поверхности среды свидетельствует о нарушении режима свертывания. Повторное свертывание также ухудшает качество среды. Среды с нарушенным режимом свертывания подлежат удалению.

Проверка на стерильность.

После свертывания каждая вновь приготовленная партия среды подвергается контролю на стерильность. Для этого она помещается в термостат и выдерживается в нем 2 - 3 суток при 37 °C.

Хранение.

Приготовленная партия среды должна иметь дату изготовления и сохраняться в холодильнике при 4 °C с тщательно закрытыми пробками для предотвращения высыхания. Срок хранения среды не должен превышать 4 недель.

4.4.3. Среда Школьниковой

В повседневной работе микробиологической лаборатории наряду с плотными питательными средами используются и жидкие, например, для нейтрализации pH посевного материала, при изучении лекарственной чувствительности микобактерий и т.д. Наиболее широко распространенной и хорошо зарекомендовавшей себя в России жидкой питательной средой является среда Школьниковой.

Реактивы:

Калий однозамещенный фосфорнокислый KH2PO4 - ТУ 6-09-5324-87;

Натрий двузамещенный фосфорнокислый Na2HPO4 - ГОСТ 4172-76;

Магний сернокислый MgSO4 x 7H2O - ГОСТ 4523-77;

Натрий лимоннокислый C6H5O7Na3 x 5,5H2O - ГОСТ 22280-86;

Лимоннокислое аммиачное железо FeNH4C6H5O7 - ТУ 6-09-1114-76;

L-аспарагин C4H8N2O3 x H2O - импортный;

Глицерин C3H8O3 - ГОСТ 6259-75;

Вода дистиллированная - ГОСТ 6709-77.

Состав среды:

Калий однозамещенный фосфорнокислый 1,5 г

Натрий двузамещенный фосфорнокислый 2,5 г

Магний сернокислый 0,5 г

Натрий лимоннокислый 1,5 г

Лимоннокислое аммиачное железо 0,05 г

L-аспарагин 1,0 г

Глицерин 30 мл

Вода дистиллированная до 1000 мл.

Вышеперечисленные ингредиенты растворяют в дистиллированной воде в указанной последовательности при слабом подогревании (не доводя до кипения) на водяной бане. Среду фильтруют через бумажный фильтр и разливают в колбы. Кислотность среды не корригируют, так как она содержит буферную смесь солей с pH среды 7,0 - 7,2.

Стерилизуют в автоклаве 30 минут при 1 атмосфере (121 °C). Срок хранения среды составляет 2 - 3 месяца при комнатной температуре.

4.5. Оценка и учет результатов посева

диагностического материала

4.5.1. Оценка результатов посева

При оценке результатов культурального исследования диагностического материала необходимо соблюдать следующие правила.

1) Посевы, выполненные в течение одного дня, помещать в отдельные ящики или штативы с указанием даты посева и размещать их в термостате в порядке номеров регистрации в хронологическом порядке, не нарушая его при еженедельных просмотрах.

2) Наблюдение за посевами и просмотр засеянных пробирок проводить еженедельно.

3) При оценке результатов регистрировать следующие параметры:

- появление роста - срок появления, начиная со дня посева;

- интенсивность роста - число колоний;

- загрязнение посева посторонней микрофлорой или грибами;

- отсутствие роста.

Соблюдение этих правил позволяет, во-первых, своевременно выявлять макроскопически видимый рост микобактерий или загрязняющей микрофлоры, а во-вторых, на основании регистрации сроков появления роста и его особенностей осуществлять первичную идентификацию микобактерий. При этом необходимо иметь в виду:

- появление роста кислотоустойчивых микобактерий в течение 7 - 10 дней культивирования на плотных питательных средах может свидетельствовать либо о выделении быстрорастущих нетуберкулезных микобактерий, к которым комплекс M.tuberculosis не относится, либо о массивном обсеменении материала М.tuberculosis; перед выдачей ответа такие культуры должны подвергнуться первичной идентификации;

- появление роста кислотоустойчивых микобактерий после 3 - 4 недель культивирования свидетельствует о выделении М.tuberculosis, а также других медленнорастущих микобактерий, которые могут относиться к потенциально патогенным нетуберкулезным микобактериям или к безвредным кислотоустойчивым сапрофитам;

- прежде чем дать отрицательный ответ после 12 недель культивирования, необходимо убедиться в отсутствии роста очень медленнорастущих микобактерий, в числе которых могут быть и M.tuberculosis.

При оценке результатов необходимо помнить, что используемые для посева питательные среды представляют собой обогащенный субстрат, который легко утилизируется другими микроорганизмами. Это обуславливает высокий риск загрязнения посевов различными бактериями и грибами, колонии которых визуально трудно отличить от микобактерий.

Во время еженедельных просмотров посевов при подозрении на загрязнение посева гноеродной или гнилостной микрофлорой необходимо, прежде всего, удалить и уничтожить (автоклавирование, сжигание) те посевы, в которых отмечается загрязнение всей поверхности питательной среды или изменение самой питательной среды (разжижение или обесцвечивание).

В ряде случаев некоторые загрязняющие посевы микроорганизмы обладают способностью разлагать составные ингредиенты среды с образованием кислоты; это приводит к снижению pH среды, высвобождению малахитового зеленого от его связей с компонентами яичной основы и изменению цвета среды на темно-зеленый. На такой среде микобактерии не растут, и такие посевы подлежат удалению.

Посевы с частичным загрязнением желательно выдержать до окончания срока инкубации или до развития хотя бы нескольких колоний микобактерий, так как позднее появление загрязнения не исключает роста M.tuberculosis. В таких случаях необходимо сделать мазок культуры, окрасить его по Ziehl-Neelsen и при наличии кислотоустойчивых микобактерий попытаться обработать выросшую культуру 3 - 4% раствором серной кислоты, а после отмывания ее изотоническим раствором хлорида натрия вновь засеять осадок на питательные среды.

Во всех случаях получения роста во избежание неверного результата и загрязнения необходимо контролировать чистоту выросшей культуры с помощью микроскопии мазка по Ziehl-Neelsen.

4.5.2. Характеристика колоний M.tuberculosis

Обычно культуры микобактерий туберкулеза от впервые выявленных больных растут на плотных питательных средах в виде R-колоний (от английского слова rough - грубый, шершавый) различной величины и вида, имеют желтоватый (не желтый!) или слегка кремовый оттенок (цвет слоновой кости), шероховатую поверхность, напоминающую манную крупу или цветную капусту. Колонии, как правило, сухие, морщинистые, но в случае диссоциации могут встречаться и влажные, слегка пигментированные колонии, розовато-желтый пигмент которых резко отличается от оранжевого или желтого пигмента сапрофитных или некоторых нетуберкулезных микобактерий. Последние обычно растут в S-форме (от английского слова smooth - гладкий). Следует отметить, что на среде Финна колонии часто выглядят более влажными, чем на среде Левенштейна-Йенсена.

После курса химиотерапии от больных туберкулезом могут выделяться гладкие колонии с влажным ростом (S-формы).

При культуральном исследовании ответ о выделении кислотоустойчивых микобактерий дается только после микроскопии окрашенного по Ziehl-Neelsen мазка из выросших колоний.

При приготовлении мазков для микроскопического исследования колонии микобактерий туберкулеза проявляют свои физико-химические особенности: они не эмульгируются в изотоническом растворе, а образуют зернистую крошковидную суспензию. Это обусловлено наличием в составе их клеточной стенки большого количества гидрофобных жировосковых субстанций.

При микроскопическом исследовании мазков из выросших колоний, окрашенных по Ziehl-Neelsen, обнаруживаются яркие малиново-красные палочковидные бактерии, лежащие одиночно или группами, образующие скопления или переплетения в виде "войлока" или "кос". Микобактерии туберкулеза выглядят как тонкие, прямые или слегка изогнутые палочки длиной 1 - 10 (чаще 1 - 4) мкм, шириной 0,2 - 0,6 мкм, гомогенные или зернистые с незначительно закругленными концами. Чаще в препарате, особенно в длительно растущих культурах, видны скопления темно окрашенных зерен. В молодых культурах, особенно выделенных от больных, длительно леченных противотуберкулезными препаратами, микобактерии отличаются большим полиморфизмом, вплоть до появления коротких, почти кокковидных форм.

Если морфология колоний или микобактерий вызывает сомнения в их принадлежности к роду Mycobacterium или культуры выделены из материала, который может содержать кислотоустойчивые сапрофиты (моча, гной из ушей и др.), мазки дополнительно обесцвечивают 3% солянокислым спиртом 40 - 45 минут. Следует учитывать, что молодые культуры микобактерий туберкулеза могут сравнительно легко обесцвечиваться спиртом, так как они обладают слабой кислотоустойчивостью. В таких случаях культуры следует выдержать в термостате еще 5 - 10 дней и вновь повторить микроскопическое исследование, чтобы убедиться в их тинкториальных свойствах.

Нетуберкулезные и авирулентные сапрофитные микобактерии могут варьировать по форме колоний и морфологии клеток. Некоторые из них грубее, толще, иногда менее интенсивно окрашены и редко образуют жгутообразные скопления. Однако некоторые виды нетуберкулезных микобактерий (фотохромогенные) могут расти в виде характерной для микобактерий туберкулеза R-форме. Многие нетуберкулезные и сапрофитные микобактерии имеют кислотоустойчивые зерна, весьма сходные по морфологии с таковыми у вирулентных микобактерий туберкулеза.

4.5.3. Учет результатов посева диагностического материала

При выделении культуры кислотоустойчивых микобактерий, отвечающих вышеперечисленным характеристикам, а именно:

- появление роста колоний на плотных питательных средах не ранее 3 - 4 недель инкубации;

- наличие колоний характерной морфологии и окраски;

- микроскопическое подтверждение кислотоустойчивости выделенного микроорганизма при окраске по Ziehl-Neelsen,

следует произвести количественную оценку интенсивности роста.

Интенсивность роста обозначают по 3-балльной системе:

(1+) - 1 - 20 КОЕ - "скудное" бактериовыделение;

(2+) - 21 - 100 КОЕ - "умеренное" бактериовыделение;

(3+) - > 100 КОЕ - "обильное" бактериовыделение.

Регистрируют число КОЕ, выросших на каждой из пробирок с разными питательными средами.

Величина КОЕ (число колониеобразующих единиц) высчитывается как среднее по результатам подсчета числа колоний, выросших на всех пробирках.

Все характеристики выросших на плотных питательных средах микобактерий заносятся в лабораторный журнал учета результатов культуральных исследований, в бланки ответов, а также в компьютерную базу данных полицевого учета.

V. ДИФФЕРЕНЦИАЦИЯ МИКОБАКТЕРИЙ КОМПЛЕКСА

MYCOBATERIUM TUBERCULOSIS

5.1. Предварительная идентификация комплекса

mycobacterium tuberculosis

Первичная идентификация микобактерий комплекса М.tuberculosis от нетуберкулезных микобактерий осуществляется по следующим культуральным характеристикам:

- скорость роста на плотных питательных средах;

- пигментообразование;

- морфология колоний;

- наличие кислотоустойчивости;

- температура роста.

Таблица 5

КУЛЬТУРАЛЬНЫЕ ПРИЗНАКИ КОМПЛЕКСА М.TUBERCULOSIS

Культуральные признаки Комплекс М.tuberculosis

Скорость роста Медленнорастущие > 3 недель

Пигментообразование Цвет слоновой кости

Морфология колоний R или S формы

Наличие кислотоустойчивости Выраженная кислотоустойчивая окраска

Температура роста Оптимальный рост при 35 - 37 °C

Несмотря на то, что предварительное заключение о выделении микобактерий туберкулеза может быть сделано опытным бактериологом на основании вышеперечисленных характерных признаков, подтверждение принадлежности выделенной культуры микобактерий к комплексу М.tuberculosis на основании специальных лабораторных тестов является обязательным.

5.2. Основные биохимические тесты

идентификации М.tuberculosis

К сожалению, не существует какого-либо одного лабораторного метода, позволяющего с достоверностью отличить микобактерии комплекса М.tuberculosis от других кислотоустойчивых микобактерий. Тем не менее, сочетание вышеописанных признаков с результатами ряда приводимых ниже биохимических тестов позволяет провести идентификацию микобактерий комплекса M.tuberculosis с точностью до 95% (см. таблицу 6).

Таблица 6

ТЕСТЫ ДЛЯ ДИФФЕРЕНЦИАЦИИ МИКОБАКТЕРИЙ

КОМПЛЕКСА М.TUBERCULOSIS

Дифференциальные тесты Микобактерии

М.tuberculosis нетуберкулезные медленнорастущие

Основные биохимические тесты на наличие:

Никотиновой кислоты + - <*>

Нитратредуктазы + +/-

Термостабильной каталазы - +

Рост на среде с натрием салициловокислым (1000 мкг/мл) - +/+/-

Дополнительные тесты: рост на средах, содержащих:

Паранитробензойную кислоту (500 мкг/мл) - + <**>

Натрия хлорид 5% - + <***>

--------------------------------

<*> За исключением М.simae.

<**> За исключением М.gastri.

<***> За исключением М.marinum, M.terrae.

Для дифференциации микобактерий комплекса М.tuberculosis, к которому относятся следующие виды микобактерий: M.tuberculosis, М.bovis, М.africanum, М.microti, от медленнорастущих нетуберкулезных кислотоустойчивых микобактерий необходимо применять следующие основные биохимические тесты:

- тест на наличие способности продуцировать никотиновую кислоту (ниациновый тест);

- тест на наличие нитратредуктазной активности;

- тест на наличие термостабильной каталазы;

- тест на наличие роста на среде с натрием салициловокислым (1 мг/мл).

В качестве дополнительных можно использовать также следующие тесты:

- рост на среде, содержащей 500 мкг/мл паранитробензойной кислоты;

- рост на среде, содержащей 5% хлорида натрия.

Для дифференциации М.tuberculosis и М.bovis следует учитывать результаты следующих проб:

- ниациновый тест;

- тест на наличие нитратредуктазы;

- тест на наличие пиразинамидазы;

- рост на среде, содержащей 2 мкг/мл гидразида тиофен-2 карбоксиловой кислоты (TCH).

Таблица 7

ТЕСТЫ ДЛЯ ДИФФЕРЕНЦИАЦИИ ОТДЕЛЬНЫХ ВИДОВ

МИКОБАКТЕРИЙ КОМПЛЕКСА М.TUBERCULOSIS

Дифференциальные тесты Виды микобактерий комплекса М.tuberculosis

М.tuber-culosis М.bovis М.af- ricanum М.mic- roti

Основные биохимические тесты на наличие:

Никотиновой кислоты + - +/- +/-

Нитратредуктазы + - - -

Термостабильной каталазы - - - -/+

Рост на среде с натрием салициловокислым (1000 мкг/мл) - - - -

Дополнительные тесты: рост на средах, содержащих:

Пиразинамид + - + +

Мочевина +/- +/- + +/-

Гидролиз твина в течение 10 дней -/+ -/+ - -/+

ТСН (2 мкг/мл) + - +/- +/-

5.2.1. Ниациновый тест

Ниацин (производное никотиновой кислоты) играет чрезвычайно важную роль в осуществлении всех окислительно-восстановительных реакций, происходящих в клетках кислотоустойчивых микобактерий. Ниацин продуцируют все микобактерии, однако исследования показали, что у М.tuberculosis в результате блокирования ряда метаболических путей никотиновая кислота накапливается в больших количествах, во много раз превышающих ее содержание в клетках микобактерий других видов. Ниацинотрицательные штаммы М.tuberculosis встречаются чрезвычайно редко. В то же время ниациновый тест не должен использоваться как единственный для идентификации М.tuberculosis, так как отдельные штаммы М.bovis, в том числе и субштаммы BCG, а также некоторые виды нетуберкулезных микобактерий (M.simiae, М.chelonae chemovar niacinogenes) обладают относительно высокой способностью синтезировать ниацин и давать положительную реакцию. Это указывает на необходимость при дифференциации выделенных микобактерий не ограничиваться только ниациновой пробой, а использовать весь рекомендованный выше комплекс реакций.

Принцип метода. Ниациновая проба основана на том, что продуцируемая микобактериями никотиновая кислота, вступая в реакцию с цианистыми соединениями, дает ярко-желтое окрашивание. Наибольшее количество никотиновой кислоты обнаруживается у штаммов, выращенных на среде Левенштейна-Йенсена, поэтому именно эта среда используется для проведения ниациновой пробы. Подлежащая дифференциации культура микобактерий должна быть выращена на среде Левенштейна-Йенсена в течение не менее 3 - 4 недель и должна иметь достаточно массивный (не менее 50 колоний) рост.

При отрицательном результате реакции следует повторить ее после 6 или более недель инкубации посева, так как возможно, что молодая культура микобактерий не выделила достаточное для реакции количество никотиновой кислоты.

При постановке ниациновой пробы необходимо иметь в виду, что M.tuberculosis выделяют продуцируемую ими никотиновую кислоту в питательную среду, на которой они выращиваются. В связи с этим при наличии на поверхности косяка с питательной средой сливного роста микобактерий возможен ложноотрицательный результат реакции, так как экстрагирующий ниацин реактив не всегда может проникнуть в глубь питательной среды. Для облегчения проникновения экстрагирующего реактива в питательную среду необходимо при наличии на ее поверхности сливного роста микобактерий либо снять и удалить часть колоний, либо проколоть поверхность культуры.

Реакция требует свободного доступа кислорода на протяжении всего исследования, поэтому следует пользоваться либо ватно-марлевыми пробками, либо специальными металлическими колпачками, обеспечивающими свободный доступ воздуха в пробирку.

Ниациновый тест можно выполнять либо с растворами химических реактивов, приготавливаемыми непосредственно перед постановкой пробы, либо с заранее приготовленными в лабораторных условиях или коммерческими бумажными полосками.

Ниациновый тест с растворами химических реактивов требует соблюдения максимальной осторожности, так как цианистые соединения чрезвычайно токсичны при ингаляции паров и вызывают слезотечение, а анилин обладает онкогенным воздействием и способен проникать через кожный барьер. Пробу следует проводить только в вытяжном шкафу! Эти обстоятельства ограничивают применение ниациновой пробы с растворами химических реактивов.

В большинстве бактериологических лабораторий для постановки ниациновой пробы пользуются специально приготовленными бумажными полосками. Преимущество этого метода заключается в использовании вместо цианистых соединений роданистого калия - вещества более безопасного и доступного для бактериологических лабораторий, а также в быстроте реакции, позволяющей через 3 - 4 часа получить ответ о принадлежности выделенной на плотной питательной среде культуры к микобактериям человеческого вида или к другим микобактериям.

Следует иметь в виду, что из-за нестабильности растворов и реагентов необходимо строго соблюдать правила хранения и сроки использования как растворов и реагентов, так и бумажных полосок. В сомнительных случаях реагенты и полоски должны сравниваться со свежеприготовленными.

Реактивы для пропитывания бумажных полосок:

Раствор 1. 20% раствор ПАСК (парааминосалициловой кислоты)

В пробирку с 1,75 мл 96° этанола добавляют 0,25 мл диметилсульфоксида и 400 мг ПАСК.

Смесь подогревают на водяной бане при 56 °C в течение 5 - 10 минут при периодическом встряхивании до полного растворения ПАСК.

Раствор 2. 60% раствор роданистого калия

Навеску 1,5 г роданистого калия растворяют в пробирке с 2,5 мл 8% раствора лимонной кислоты (200 мг лимонной кислоты и 2,5 мл дистиллированной воды).

Раствор 3. 50% раствор хлорамина "Б"

3,125 г хлорамина "Б" растворяют в 6,25 мл дистиллированной воды на водяной бане при температуре 56 - 60 °C при периодическом встряхивании.

Индикаторные бумажные полоски размером 60 x 80 мм готовят из фильтровальной бумаги Filtrak 11 или аналогичной. Один конец полоски отмечают простым карандашом. Оттянутыми пастеровскими пипетками на полоски наносят по 1 капле свежеприготовленных растворов в следующем порядке:

- 20% раствор ПАСК - на отмеченный карандашом конец полоски;

- 60% раствор роданистого калия - на середину полоски;

- 50% горячий раствор хлорамина "Б" - на свободный конец полоски;

- между каплями должны оставаться сухие промежутки.

Индикаторные полоски высушивают в темноте при комнатной температуре в течение 24 часов. Затем для получения более четких результатов наносят повторно 1 каплю хлорамина "Б" на уже высохшую каплю этого раствора. Полоски вновь высушивают, затем помещают в пробирки, закрывают резиновыми пробками и хранят в холодильнике. Полоски пригодны к употреблению в течение 3 месяцев.

Процедура исследования:

- добавить в пробирку с исследуемой культурой микобактерий 1 - 1,5 мл стерильной дистиллированной воды. При наличии сливного роста проткнуть поверхность среды в нескольких местах пипеткой для облегчения доступа раствора к питательной среде;

- поместить пробирку в термостат на 2 - 3 часа в полугоризонтальном положении с тем, чтобы жидкость покрывала всю поверхность среды;

- вынуть пробирку из термостата и перевести ее в вертикальное положение, позволив жидкости стечь на дно в течение 5 - 6 минут;

- в чистую стерильную пробирку перенести пипеткой 0,5 - 0,6 мл экстракта;

- индикаторную полоску помеченным карандашом концом, на который нанесена ПАСК, опустить с помощью пинцета в пробирку с экстрактом, не допуская смачивания экстрагирующей жидкостью средней части полоски, на которую был нанесен роданистый калий;

- немедленно закрыть пробирку резиновой пробкой;

- оставить при комнатной температуре на 15 - 30 минут; допустимо осторожно покачивать пробирку, пока вся полоска не пропитается экстрактом;

- наблюдать за окрашиванием жидкости на дне пробирки на белом фоне.

При положительном ниациновом тесте экстракт окрашивается в желтый цвет разной интенсивности. Любая окраска индикаторной полоски не принимается во внимание, так как это может происходить вследствие окисления реактивов в верхней части полоски. Для дегазации пробирок после проведения реакции пользуются 10% раствором нашатырного спирта, 10% раствором едкого натра или любым щелочным дезинфицирующим средством.

5.2.2. Тест на наличие нитратредуктазы

При дифференциации микобактерий туберкулеза применяется также реакция восстановления нитратов в нитриты. Реакция восстановления нитратов дает возможность дифференцировать микобактерии человеческого вида, обладающие нитратредуктазой, от микобактерий бычьего и птичьего видов и от некоторых нетуберкулезных микобактерий, у которых этот фермент отсутствует. Из всех микобактерий нитратредуктазная активность наиболее выражена у M.tuberculosis. Это позволяет использовать данный тест в сочетании с ниациновым тестом для дифференциальной диагностики M.tuberculosis и микобактерий других видов.

Для определения способности микобактерий редуцировать нитраты используют 4-недельные культуры с обильным ростом, выращенные на среде Левенштейна-Йенсена.

Принцип метода заключается в определении активности нитратредуктазы по количеству восстановленного нитрита из нитрата, что сопровождается цветной реакцией с парадиметиламинобензальдегидом.

5.2.2.1. Классический метод

Приготовление реактивов

Раствор 1. Нитрат натрия в фосфатном буфере.

0,01 М раствор нитрита натрия в 0,022 М фосфатном буферном растворе (pH = 7,0) готовится следующим образом:

А. 3,02 г KH2PO4 растворить в 1000 мл дистиллированной воды.

Б. 3,16 г Na2HPO4 растворить в 1000 мл дистиллированной воды.

В. 611 мл раствора Б добавить к 389 мл раствора А, хорошо смешать (величина pH раствора должна составлять 7,0).

В 1000 мл полученного буферного раствора (В) растворить 0,85 г NaNO3.

Разлить полученный раствор 1 в емкости по 100 мл. Стерилизовать в автоклаве при 121 °C в течение 15 минут. При необходимости этот раствор можно переносить по 2 мл в пробирки с завинчивающимися крышками.

Раствор 2. Раствор соляной кислоты.

Концентрированная соляная кислота 10 мл

Дистиллированная вода 10 мл.

Медленно влить концентрированную соляную кислоту в дистиллированную воду, чтобы получить разведение 1:1.

НИКОГДА НЕ ВЛИВАЙТЕ ВОДУ В КИСЛОТУ!

Хранить полученную смесь в герметически закрытой бутыли из темного стекла в холодильнике.

Раствор 3. Раствор сульфаниламида (0,2%).

Сульфаниламид 0,2 г

Дистиллированная вода 100 мл.

Растворить сульфаниламид в дистиллированной воде. Хранить полученную смесь в герметически закрытой бутыли из темного стекла в холодильнике.

Раствор 4. Раствор N-нафтилэтилендиамина (0,1%).

N-нафтилэтилендиамин 0,1 г

Дистиллированная вода 100 мл.

Растворить нафтилэтилендиамин в дистиллированной воде. Хранить полученную смесь в герметически закрытой бутыли из темного стекла в холодильнике.

Контроль реактивов

Перед выполнением теста необходимо проконтролировать пригодность реактивов:

отрицательный контроль - тест с экстрактом из пробирки с незасеянной средой;

положительный контроль - тест с экстрактом референс-штамма М.tuberculosis H37Rv.

ПРОЦЕДУРА ВЫПОЛНЕНИЯ КЛАССИЧЕСКОГО ТЕСТА

Внести 0,2 мл стерильного изотонического раствора хлорида натрия

в пробирку с завинчивающейся крышкой

\/

С помощью стерильной бактериологической петли или лопатки

суспендировать в этом растворе четырехнедельную культуру

микобактерий (использовать две лопатки биомассы бактерий)

\/

Добавить 2 мл раствора 1 (раствор нитрата натрия в буфере)

\/

Хорошо встряхнуть и оставить на 3 часа в водяной бане при

температуре 37 °C

\/

Добавить в следующем порядке:

1 каплю разведенной соляной кислоты (раствор 2),

хорошо встряхнуть пробирку;

2 капли 0,2% раствора сульфаниламида (раствор 3);

2 капли 0,1% раствора N-нафтилэтилендиамина (раствор 4)

\/

Немедленно проконтролировать появление розового или красного

окрашивания, сравнив его интенсивность с цветовым стандартом

Результаты и их интерпретация

Отрицательный результат - окрашивания нет. Если раствор остается бесцветным, это означает, что результат теста отрицательный или что процесс восстановления прошел слишком быстро, при этом нитриты восстановились до нитридов. Для того чтобы убедиться в истинности результата, необходимо добавить в пробирку немного порошка цинка (небольшой объем порошка цинка перенесите из флакона на кончике слегка увлажненного аппликатора).

а) Если в растворе остался нитрат, цинк катализирует реакцию и появится красное окрашивание, что свидетельствует об истинно отрицательном результате теста.

б) Если после добавления порошка цинка красного окрашивания раствора не произошло, это означает, что результат теста положителен, но процесс восстановления прошел стадию нитрита.

Повторить тест, чтобы подтвердить его результат.

Градации интенсивности окраски:

Бледно-розовая = +/-

Розовая = 1+

Темно-розовая = 2+

Красная = 3+

Темно-красная = 4+

Пурпурно-красная = 5+.

Положительным результат считают только в тех случаях, когда интенсивность окраски составляет от 3+ до 5+.

5.2.2.2. Модифицированный метод с использованием бумажных полосок

Для определения способности бактерий редуцировать нитраты можно использовать коммерческие бумажные полоски. При использовании данной модификации нитратредуктазного теста надежные результаты получаются в тех случаях, когда микобактерии интенсивно редуцируют нитраты (например, М.tuberculosis). Поэтому при идентификации микобактерий туберкулеза этот метод дает вполне приемлемые результаты и позволяет сократить трудозатраты, хотя стоимость бумажных полосок значительно выше.

ПРОЦЕДУРА ВЫПОЛНЕНИЯ ТЕСТА

Внести 1 мл стерильного изотонического раствора хлорида натрия в

пробирку с завинчивающейся крышкой

\/

С помощью бактериологической лопатки суспендировать в этом

изотоническом растворе четырехнедельную культуру микобактерий в

объеме 2-х лопаток

\/

С помощью стерильного пинцета аккуратно внести в пробирку

бумажную полоску для нитратредуктазного теста; при этом не

допускается увлажнение полоски каплями жидкости на стенках

пробирки

\/

Тщательно закрыть крышку и оставить пробирку в вертикальном

положении на 2 часа при температуре 37 °C.

После первого часа инкубации осторожно встряхнуть пробирку, не

наклоняя ее и не переворачивая

\/

После двух часов инкубации пробирку шестикратно наклонить, чтобы

индикаторная полоска смочилась полностью

\/

Оставить пробирку на 10 минут в наклонном положении, чтобы

жидкость покрывала всю полоску

\/

Появление красного окрашивания в верхней части полоски означает

положительный результат теста

Результаты и их интерпретация

Отрицательный результат - отсутствие окрашивания.

Положительный результат - верхняя часть полоски приобретает красный цвет (оттенок от розового до темно-красного).

Предосторожности

Перед проведением теста убедиться, что срок годности коммерческих тест-полосок не истек.

Полоски чувствительны к солнечному свету, а также к повышенной температуре и влажности, поэтому их следует хранить в оригинальной упаковке в непрозрачном контейнере с крышкой при температуре 2 - 8 °C.

Не следует использовать обесцвеченные полоски. Если полоски обесцветились, они подлежат уничтожению, так как произошло снижение активности реагента.

Результаты следует расценивать как сомнительные, если в положительном контроле получены слабоположительные или отрицательные результаты.

Стандарты интенсивности окраски, характеризующие активность нитратредуктазы

Чтобы обеспечить унификацию положительных результатов теста по выявлению способности микобактерий восстанавливать нитраты, рекомендуется использовать заранее приготовленную серию стандартов, соответствующих различной активности нитратредуктазы. Активность этой ферментной системы выражается в интенсивности окраски - от "+/-" до "5+" (см. выше). Эти стандарты можно хранить неопределенно долго и использовать при каждой постановке нитратредуктазного теста.

Реагенты

Растворы:

1. 0,067 М раствор фосфата натрия двузамещенного (9,47 г безводного Na2HPO4 на 1000 мл воды).

2. 0,067 М раствор фосфата калия однозамещенного (9,07 г KH2PO4 на 1000 мл воды).

3. 0,067 M раствор фосфата натрия трехзамещенного (25,47 г Na3PO4 x 12H2O на 1000 мл воды).

4. 1% спиртовой раствор фенолфталеина (1 г на 100 мл 95% этилового спирта).

5. 1% спиртовой раствор бромтимолового синего (1 г на 100 мл 95% этилового спирта).

6. 0,01% раствор бромтимолового синего: внести 1,0 мл 1% раствора бромтимолового синего в 100 мл дистиллированной воды.

Рабочий буферный раствор:

Смешать 35 мл раствора N 1, 5 мл раствора N 2 и 100 мл раствора N 3.

7. К 10 мл рабочего буферного раствора добавить 0,1 мл раствора N 4 и 0,2 мл раствора N 6.

Процедура:

Поставить в штатив 8 чистых пробирок (пробирки N 1 - 8).

Внести 2 мл рабочего буферного раствора в 7 пробирок (с N 2 до N 8).

Внести 2 мл раствора N 7 в пробирку N 1. Это - цветовой стандарт, соответствующий реакции максимальной интенсивности ("5+").

В пробирку N 2 внести 2 мл раствора N 7. Хорошо перемешать и перенести 2 мл в следующую пробирку (N 3). Продолжить серию двукратных разведений вплоть до пробирки N 8, из которой вылить 2 мл смеси.

В результате будут получены следующие цветовые стандарты:

пробирка N 1 = 5+

пробирка N 2 = 4+

пробирка N 3 = 3+

пробирка N 5 = 2+

пробирка N 6 = 1+

пробирка N 8 = +/-.

Автоклавировать пробирки, закрыть их герметично и хранить при 5 °C.

5.2.3. Каталазный тест

Каталаза - это внутриклеточный растворимый фермент, который способен расщеплять перекись водорода на воду и кислород, т.е. обеспечивать следующую химическую реакцию: 2H2O2 = 2H2O + O2. При этом в реагирующей смеси образуются пузырьки кислорода, что указывает на наличие каталазной активности. Почти все виды микобактерий обладают каталазной активностью, за исключением М.bovis и некоторых резистентных к изониазиду штаммов М.tuberculosis.

В клетках микобактерий присутствует ряд изоферментов каталазы, отличающихся по термостабильности. Необходимо отметить, что нетуберкулезные микобактерии и некоторые сапрофиты синтезируют термостабильную каталазу.

При изучении каталазной активности микобактерий используют как качественные, так и количественные тесты:

- качественный (капельный) тест, указывающий на наличие каталазы (выполняется при комнатной температуре);

- полуколичественный тест, указывающий на уровень каталазной активности (измеряется высотой столбика пузырьков в пробирке);

- тест на термостабильность каталазы - тест определения наличия каталазы при 68 °C и pH = 7,0.

Чувствительные к противотуберкулезным препаратам штаммы M.tuberculosis продуцируют каталазу, активность которой определяют капельным методом. При постановке полуколичественного теста столбик пузырьков газа не превышает 45 мм.

ПОСЛЕ ПРОГРЕВАНИЯ БАКТЕРИЙ ПРИ 68 °C И PH = 7,0 В ТЕЧЕНИЕ 20 МИНУТ МИКОБАКТЕРИИ КОМПЛЕКСА M.TUBERCULOSIS ДАЮТ ОТРИЦАТЕЛЬНЫЙ РЕЗУЛЬТАТ.

Для постановки этих тестов следует использовать двухнедельные культуры, дорощенные на среде Левенштейна-Йенсена при 35 - 37 °C. Для выполнения указанных тестов пробирки с питательной средой помещают в свертыватель для коагуляции в вертикальном положении. При инкубации в стандартных условиях пробирки должны быть закрыты пробками, обеспечивающими газообмен и влажность. Продолжительность инкубации - 14 дней.

Реактивы:

0,067 М фосфатный буферный раствор, pH = 7,0.

Раствор 1:

Na2HPO4 безводный 9,47 г

Дистиллированная вода 1000 мл.

Растворить навеску Na2HPO4 в дистиллированной воде, чтобы получить 0,067 М раствор.

Раствор 2:

KH2PO4 9,07 г

Дистиллированная вода 1000 мл.

Растворить навеску KH2PO4 в дистиллированной воде, чтобы получить 0,067 М раствор.

Дня получения 0,067 М фосфатного буфера смешать 611 мл раствора 1 и 389 мл раствора 2.

Раствор 3. Перекись водорода, 30%.

30% раствор перекиси водорода (H2O2) хранят в холодильнике.

Проверить, чтобы при постановке теста был использован 30% раствор перекиси водорода, а не 3% раствор, который обычно получают из аптек.

При работе с 30% раствором перекиси водорода используют резиновые перчатки и защитный щиток для глаз.

Раствор 4. 10% твин 80:

Твин 80 10 мл

Дистиллированная вода 90 мл.

Смешать твин 80 с дистиллированной водой и автоклавировать при 121 °C в течение 10 минут. В процессе автоклавирования твин 80 может образовать осадок, который можно растворить при покачивании флакона сразу же после автоклавирования или в процессе охлаждения. Готовый раствор хранить в холодильнике.

Готовый каталазный реагент (смесь твина с перекисью водорода).

Непосредственно перед постановкой теста смешать равные объемы 10% раствора твина 80 и 30% раствора перекиси водорода. Для исследования каждого штамма требуется 1,0 мл каталазного реагента.

Контроли для тестов:

Капельный метод

В качестве отрицательного контроля используют пробирку со средой Левенштейна-Йенсена без инокуляции культурой микобактерий, а в качестве положительного контроля - пробирку с референс-штаммом М.tuberculosis H37Rv, выращенным на среде Левенштейна-Йенсена.

Полуколичественный метод и тест на термостабильность каталазы при 68 °C

В качестве отрицательного контроля используют пробирку со средой Левенштейна-Йенсена без инокуляции культурой микобактерий, а в качестве положительного контроля - пробирку с референс-штаммом М.terrae, выращенным на среде Левенштейна-Йенсена.

Процедура исследования:

Капельный метод

Для постановки теста использовать двухнедельную культуру микобактерий на среде Левенштейна-Йенсена, заранее убедившись в наличии роста микобактерий. В пробирку с ростом микобактерий добавить 1 - 2 капли свежеприготовленной смеси твина 80 с перекисью водорода (готовый каталазный реагент). Наблюдать в течение 5 минут, происходит ли образование пузырьков газа.

РЕЗУЛЬТАТЫ И ИХ ИНТЕРПРЕТАЦИЯ

Отрицательный Пузырьки газа не образуются

Положительный (медленный) Несколько медленно образующихся пузырьков (1 - 3 мин.)

Положительный (быстрый) Немедленное бурное образование пузырьков

Полуколичественный метод

Для постановки теста использовать двухнедельную культуру микобактерий на среде Левенштейна-Йенсена, заранее убедившись в наличии роста микобактерий. В пробирку с ростом микобактерий добавить 1 мл свежеприготовленной смеси твина-80 с перекисью водорода, плотно закрыть пробирку и оставить на 5 минут при комнатной температуре. В пробирке образуется столбик пены.

Измерить высоту этого столбика от уровня жидкости в пробирке до верхнего края пены.

РЕЗУЛЬТАТЫ И ИХ ИНТЕРПРЕТАЦИЯ

Каталазная активность слабая или отсутствует Высота столбика пены менее 31 мм

Неопределенный результат Высота столбика пены от 31 мм до 45 мм

Высокая каталазная активность Высота столбика пены более 45 мм

Тест на термостабильность катализы при 68 °C и pH = 7,0

ПРОЦЕДУРА ИССЛЕДОВАНИЯ

С помощью стерильной пипетки внести с соблюдением правил

асептики 0,5 мл 0,067 М фосфатного буферного раствора (pH = 7,0)

в пробирку размерами 16 x 125 мм с завинчивающейся крышкой

\/

С помощью стерильной бактериологической петли или лопатки

суспендировать в этом растворе исследуемую культуру микобактерий

(использовать несколько петель биомассы)

\/

Поставить пробирки с бактериальными суспензиями в предварительно

нагретую водяную баню на 2 часа при температуре 68 °C.

Температура и продолжительность инкубации имеют чрезвычайно

важное значение

\/

Вынуть пробирки из водяной бани и оставить при комнатной

температуре до полного остывания

\/

Внести в каждую пробирку 0,5 мл свежеприготовленной смеси твина

80 с перекисью водорода и плотно закрыть пробки

\/

Наблюдать за образованием пузырьков, появляющихся на поверхности

жидкости. Не встряхивать пробирку, так как при этом твин 80

может спонтанно образовывать пузырьки, что станет причиной

ложноположительного результата

\/

Пробирки с отрицательными результатами не выбрасывать раньше

чем через 20 минут

РЕЗУЛЬТАТЫ И ИХ ИНТЕРПРЕТАЦИЯ

Положительный результат + Образуются пузырьки газа

Отрицательный результат - Пузырьков газа нет

В редких случаях может наблюдаться небольшое количество пузырьков, поднимающихся от осадка бактериальных клеток; при этом пена в пробирке не образуется. В таких случаях результаты каталазного теста также считают положительными.

5.2.4. Тест с салициловокислым натрием (салициловый тест)

Микобактерии комплекса М.tuberculosis не обладают способностью утилизировать салициловокислый натрий, который оказывает на рост микобактерий туберкулеза угнетающее воздействие. Это свойство салицилата натрия используется как один из основных биохимических методов дифференциации М.tuberculosis и нетуберкулезных микобактерий.

Для проведения этого теста готовят среду Левенштейна-Йенсена, в состав которой до свертывания вводят салицилат натрия в количестве, позволяющем получить концентрацию препарата, равную 1000 мкг/мл. В качестве контрольной используют пробирку со стандартной средой Левенштейна-Йенсена.

Указанный тест чаше всего ставят одновременно с постановкой опыта по определению лекарственной устойчивости, добавляя к набору пробирок 1 пробирку с 1000 мкг/мл салициловокислого натрия. Посев суспензии исследуемой культуры микобактерий и учет результатов теста производят одновременно с посевом на среды, содержащие противотуберкулезные препараты, и учетом лекарственной устойчивости.

Микобактерии комплекса M.tuberculosis не дают роста на среде с салициловокислым натрием.

При наличии лекарственной устойчивости ко всем основным противотуберкулезным препаратам необходимо убедиться, что исследуемая культура не принадлежит к нетуберкулезным микобактериям, для которых этот феномен является характерным. При этом следует иметь в виду, что видимый рост на среде с салициловокислым натрием появляется значительно позже срока, установленного для учета лекарственной устойчивости. Поэтому в таких случаях после учета результатов определения лекарственной устойчивости контрольную пробирку и пробирку с салициловокислым натрием следует сбрасывать не сразу, а лишь после окончания всех дифференцирующих тестов.

5.3. Дополнительные биохимические тесты

Для принципиального отличия микобактерий комплекса M.tuberculosis от нетуберкулезных микобактерий применяются вышеперечисленные в таблице 6 дополнительные биохимические тесты. Все химические вещества, используемые в этих тестах, обладают способностью подавлять рост микобактерий комплекса M.tuberculosis. Во всех тестах применяется специально приготовленная среда Левенштейна-Йенсена, содержащая соответственно: 500 мкг/мл паранитробензойной кислоты или 5% натрия хлорида. В качестве контроля в каждом из тестов используется пробирка со стандартной средой Левенштейна-Йенсена.

5.3.1. Тест с паранитробензойной кислотой (PNB-тест)

В лабораториях, в которых оборудование и/или отсутствие реагентов не позволяют производить постановку ниацинового и нитратредуктазного тестов, для идентификации микобактерий туберкулеза может быть использована комбинация одного или нескольких описанных выше каталазных тестов, а также определение способности к росту при 37 °C на среде Левенштейна-Йенсена, содержащей паранитробензойную кислоту (PNB-тест).

Приготовление среды с паранитробензойной кислотой

50 мг паранитробензойной кислоты (ПНБ) хорошо растирают в ступке, добавляют 5 мл дистиллированной воды и примерно 20 капель (1,0 мл) 4% едкого натра до pH = 8. После полного растворения ПНБ добавляют 2 - 3 капли 6% соляной кислоты, доводя pH до 7,0. Полученный раствор добавляют к 95 мл предварительно профильтрованной яичной среды, получая таким образом конечную концентрацию паранитробензойной кислоты в среде, равную 500 мкг/мл. Свертывание среды производят в обычном порядке.

Процедура исследования

Перед проведением теста необходимо приготовить пробирки с питательной средой Левенштейна-Йенсена, содержащей паранитробензойную кислоту в концентрации 500 мкг/мл. В качестве контроля используются пробирки со стандартной средой Левенштейна-Йенсена.

Произвести посев в две пробирки со средой Левенштейна-Йенсена, одна из которых содержит паранитробензойную кислоту в концентрации 500 мкг/л, другая - контрольная без паранитробензойной кислоты.

В процессе инкубации при 37 °C пробирки исследуются на 3-й, 7-й, 14-й и 21-й день.

5.3.2. Тест с 5% хлоридом натрия

Данный тест используется для дифференциации микобактерий комплекса М.tuberculosis и выполняется аналогично тесту с паранитробензойной кислотой на среде Левенштейна-Йенсена, содержащей 5% хлорида натрия. Метод основан на способности ряда видов нетуберкулезных микобактерий расти на среде, содержащей 5% хлорида натрия. Микобактерии комплекса М.tuberculosis на этой среде не растут.

5.3.3. Пиразинамидазный тест

Тест применяется как дополнительный для дифференциации М.tuberculosis от М.bovis. Тест основан на способности М.tuberculosis в течение 4-х дней дезаминировать пиразинамид до пиразиновой кислоты и аммония, что указывает на наличие пиразинамидазы. М.bovis не проявляет пиразинамидазной активности даже после 7 дней инкубации.

5.3.4. Тест с гидразидом тиофен-2-карбоксиловой кислоты (ТСН)

Тест используется для дифференциации М.bovis от М.tuberculosis и других медленнорастущих микобактерий. Только М.bovis чувствительны к низким концентрациям ТСН (от 1 до 5 мкг/мл). М.tuberculosis и другие микобактерии обычно устойчивы к действию этого химического соединения.

Микобактерии комплекса M.tuberculosis

характеризует следующая совокупность признаков

Медленная скорость роста (более 3-х недель).

Температура роста в пределах 35 - 37 °C.

Отсутствие пигментообразования (цвет слоновой кости).

Выраженная кислотоустойчивая окраска.

Положительный ниациновый тест.

Положительный нитратредуктазный тест.

Отсутствие термостабильной каталазы (68 °C).

Отсутствие роста на среде Левенштейна-Йенсена, содержащей:

- 1000 мкг/мл натрия салициловокислого;

- 500 мкг/мл паранитробензойной кислоты;

- 5% хлорида натрия.

Рост в присутствии 1 - 5 мкг/мл ТСН.

VI. ОПРЕДЕЛЕНИЕ ЛЕКАРСТВЕННОЙ УСТОЙЧИВОСТИ МИКОБАКТЕРИЙ

К ПРОТИВОТУБЕРКУЛЕЗНЫМ ПРЕПАРАТАМ

Определение спектра и степени устойчивости микобактерий к противотуберкулезным препаратам имеет важное значение для тактики химиотерапии больных, контроля за эффективностью лечения, определения прогноза заболевания и проведения эпидемиологического мониторинга лекарственной устойчивости микобактерий в пределах отдельной территории, страны и мирового сообщества. Степень лекарственной устойчивости микобактерий определяется в соответствии с установленными критериями, которые зависят как от противотуберкулезной активности лекарственного препарата, так и его концентрации в очаге поражения, величины максимальной терапевтической дозы, фармакокинетики препарата и многих других факторов.

В настоящее время для определения лекарственной устойчивости микобактерий к противотуберкулезным препаратам в международной практике используются следующие методы:

- метод пропорций на среде Левенштейна-Йенсена или на среде Миддлбрука 7Н10;

- метод абсолютных концентраций на плотной яичной среде Левенштейна-Йенсена;

- метод коэффициента резистентности;

- радиометрический метод Bactec R 460.

Выбор того или иного метода определяется традиционно сложившимися методическими подходами, используемыми в данной стране. Однако необходимо иметь в виду, что обязательным условием эффективного мониторинга, обеспечения эпидемиологического надзора за лекарственной устойчивостью микобактерий и распространением лекарственно-устойчивых штаммов возбудителя, а также сопоставления результатов исследований и эффективности лечения в масштабах страны должен использоваться только один из предложенных унифицированных методов.

В нашей стране получило распространение определение лекарственной устойчивости методом абсолютных концентраций на среде Левенштейна-Йенсена.

При всех методах определения лекарственной устойчивости необходимым звеном в деятельности лаборатории является обеспечение контроля качества исследований.

6.1. Виды лекарственной устойчивости

Чувствительность микобактерий к противотуберкулезным препаратам определяется неспособностью штамма расти на среде, содержащей препарат, при стандартных условиях постановки опыта. Чувствительными к данному препарату считаются те штаммы микобактерий, на которые этот препарат в критической концентрации оказывает бактерицидное или бактериостатическое действие в соответствии с принятым критерием устойчивости.

Устойчивость (резистентность) определяется как снижение чувствительности до такой степени, что данный штамм микобактерий способен размножаться при воздействии на него препарата в критической или более высокой концентрации.

Наряду с понятиями "чувствительность" и "устойчивость" к противотуберкулезным препаратам в настоящее время используются также термины, определяющие различные аспекты лекарственной устойчивости. Так, в случае наличия лекарственной устойчивости к двум или более лекарственным препаратам данный штамм микобактерий определяется как полирезистентный.

Особое место среди полирезистентных занимают микобактерии, у которых обнаруживается лекарственная устойчивость к двум основным противотуберкулезным препаратам (изониазиду и рифампицину) - штаммы, обладающие лекарственной устойчивостью одновременно к изониазиду и рифампицину, независимо от наличия устойчивости к другим противотуберкулезным препаратам, обозначаются как штаммы с множественной лекарственной устойчивостью (или штаммы с МЛУ).

Этим штаммам уделяется особое внимание, так как лечение пациентов, у которых процесс вызван такими штаммами, представляет большие трудности. Оно является длительным, дорогостоящим и требует использования препаратов резервного ряда, многие из которых дорогостоящие и могут вызывать тяжелые побочные реакции. Кроме того, некоторые штаммы с множественной лекарственной устойчивостью обладают повышенной способностью к распространению (трансмиссивностью) и вызывают тяжелые прогрессирующие формы заболевания, нередко приводящие к неблагоприятным исходам.

Наряду с перечисленными определениями различных видов спектра лекарственной устойчивости микобактерий, в международной практике принято различать первичную и приобретенную лекарственную устойчивость.

Первичная лекарственная устойчивость определяется как устойчивость, обнаруженная у микобактерий, выделенных от пациента, никогда не принимавшего противотуберкулезные препараты или получавшего такое лечение менее одного месяца. В данном случае подразумевается, что больной заразился лекарственно-устойчивым штаммом микобактерий. Первичная лекарственная устойчивость характеризует состояние микобактериальной популяции, циркулирующей в данной территории, и ее показатели важны для оценки степени напряженности эпидемической ситуации.

Приобретенная (вторичная) лекарственная устойчивость определяется как устойчивость микобактерий, выявленных у больного туберкулезом, получавшего лечение противотуберкулезными препаратами в течение месяца и более. Вторичная лекарственная устойчивость является косвенным показателем эффективности проводимой химиотерапии.

6.2. Критерии лекарственной устойчивости

Уровень устойчивости данного штамма в целом выражается той максимальной концентрацией препарата (количество мкг в 1 мл питательной среды), при которой еще наблюдается размножение микобактерий (по числу колоний на плотных средах).

Лекарственно-устойчивые микроорганизмы способны размножаться при таком содержании препарата в среде, которое оказывает на чувствительные особи бактериостатическое или бактерицидное воздействие.

Критические концентрации. Критерии лекарственной устойчивости.

Для различных препаратов установлена определенная критическая концентрация. Она имеет клиническое значение, так как отражает воздействие препарата на микобактерии туберкулеза в условиях макроорганизма.

КРИТЕРИЕМ УСТОЙЧИВОСТИ МИКОБАКТЕРИАЛЬНОЙ ПОПУЛЯЦИИ НАЗЫВАЮТ ПОКАЗАТЕЛЬ РОСТА МИКОБАКТЕРИАЛЬНОГО ПУЛА, ВЫРАЖЕННЫЙ В АБСОЛЮТНЫХ (ЧИСЛО КОЕ) ИЛИ ОТНОСИТЕЛЬНЫХ ЕДИНИЦАХ (ПРОПОРЦИЯ КОЕ), НА ПИТАТЕЛЬНОЙ СРЕДЕ, СОДЕРЖАЩЕЙ ПРОТИВОТУБЕРКУЛЕЗНЫЙ ПРЕПАРАТ В КРИТИЧЕСКОЙ КОНЦЕНТРАЦИИ, ПРЕВЫШЕНИЕ КОТОРОГО СЧИТАЕТСЯ НАЛИЧИЕМ ПРИЗНАКА УСТОЙЧИВОСТИ МИКОБАКТЕРИЙ.

Для метода абсолютных концентраций появление более 20 КОЕ

микобактерий на питательной среде, содержащей лекарственный

препарат в критической концентрации, свидетельствует о том, что

данный штамм микобактерий обладает лекарственной устойчивостью.

При этом необходимо иметь в виду, что объем засеваемой суспензии

7

клеток стандартизован и соответствует 1 x 10 микробных тел.

Для разных по составу питательных сред критическая концентрация одного и того же препарата различна. Значения критических концентраций существенно отличаются также при использовании разных методов определения лекарственной чувствительности.

Таблица 8

КРИТИЧЕСКИЕ КОНЦЕНТРАЦИИ

ПРОТИВОТУБЕРКУЛЕЗНЫХ ПРЕПАРАТОВ ДЛЯ ОПРЕДЕЛЕНИЯ

ЛЕКАРСТВЕННОЙ УСТОЙЧИВОСТИ МЕТОДОМ АБСОЛЮТНЫХ

КОНЦЕНТРАЦИЙ НА СРЕДЕ ЛЕВЕНШТЕЙНА-ЙЕНСЕНА

Название препарата Концентрация в мкг/мл

Препараты основного ряда

Стрептомицин 10

Изониазид 1

Рифампицин 40

Этамбутол 2

Препараты резервного ряда <*>

Канамицин 30

Протионамид (этионамид) 30

Циклосерин 30

Капреомицин 30

Офлоксацин 2

ПАСК 1

Пиразинамид 200

--------------------------------

<*> Критические концентрации препаратов II ряда носят ориентировочный характер и будут окончательно установлены после дополнительных исследований.

6.3. Метод абсолютных концентраций

В России для определения лекарственной устойчивости микобактерий традиционно используется метод абсолютных концентраций на плотной яичной питательной среде Левенштейна-Йенсена.

В большинстве случаев этот метод применяется для непрямого определения лекарственной устойчивости. Непрямым методом называется метод определения лекарственной устойчивости после выделения культуры микобактерий. Он позволяет исследовать любое количество микобактерий в диагностическом материале, поскольку для определения лекарственной устойчивости используются штаммы микобактерий, предварительно выделенные на питательных средах. Так как сроки выделения возбудителя на питательных средах составляют не менее 1 - 1,5 месяцев, результаты определения лекарственной устойчивости указанным методом обычно получают не ранее чем через 2 - 2,5 месяца после посева материала.

При определении лекарственной устойчивости микобактерий на

плотных средах культура считается чувствительной к той

концентрации препарата, которая содержится в среде, если число

колоний микобактерий, выросших на одной пробирке с препаратом, не

7

превышает 20, а посевная доза соответствует 1 x 10 микробных тел.

Культура расценивается как устойчивая к данной концентрации

препарата только при наличии на пробирке с этой концентрацией 20

колоний и более при обильном росте в контрольной пробирке, не

содержащей лекарственного препарата.

В отечественной фтизиатрической практике при определении лекарственной устойчивости не ограничиваются определением только критических концентраций. Это связано с тем, что расширенное определение уровня лекарственной устойчивости возбудителя позволяет клиницисту варьировать дозировки препаратов и лекарственные режимы, добиваясь более эффективного воздействия препаратов за счет допустимого повышения дозы и использования синергидных и аддитивных свойств различных комбинаций лекарственных препаратов.

Таблица 9

КОНЦЕНТРАЦИИ ПРЕПАРАТОВ,

ИСПОЛЬЗУЕМЫЕ ПРИ ОПРЕДЕЛЕНИИ ЛЕКАРСТВЕННОЙ УСТОЙЧИВОСТИ

МИКОБАКТЕРИЙ МЕТОДОМ АБСОЛЮТНЫХ КОНЦЕНТРАЦИЙ

НА СРЕДЕ ЛЕВЕНШТЕЙНА-ЙЕНСЕНА

Препарат Концентрации в мкг/мл

Препараты I ряда

Стрептомицин 10 25

Изониазид 1 10

Рифампицин 40 80

Этамбутол 2 5

Препараты II ряда

Канамицин 30 50

Протионамид (этионамид) 30 50

Циклосерин 30 50

Капреомицин 30 50

Офлоксацин 2 10

ПАСК 1 5

6.3.1. Разведение противотуберкулезных препаратов и приготовление питательных сред

В питательную среду Левенштейна-Йенсена, не содержащую крахмала (крахмал адсорбирует лекарственные препараты), непосредственно перед свертыванием добавляют рабочие разведения различных противотуберкулезных препаратов.

Для приготовления питательных сред с целью определения лекарственной устойчивости микобактерий должны использоваться химически чистые субстанции противотуберкулезных препаратов.

ДЛЯ ПРИГОТОВЛЕНИЯ ИЗ ХИМИЧЕСКИ ЧИСТОЙ ПОРОШКОВИДНОЙ ФОРМЫ ПРЕПАРАТА РАБОЧИХ РАСТВОРОВ, СОДЕРЖАЩИХ НЕОБХОДИМЫЕ ДЛЯ ИССЛЕДОВАНИЯ КОНЦЕНТРАЦИИ АКТИВНОЙ СУБСТАНЦИИ, РАСЧЕТЫ ПРОИЗВОДЯТ С УЧЕТОМ ПРОЦЕНТА АКТИВНОСТИ ПРЕПАРАТА.

Активность препарата может варьировать от одной его серии к другой серии. Сведения об активности приводятся на этикетках или упаковках лекарственных препаратов и могут быть получены от компании-изготовителя.

6.3.2. Примеры приготовления питательных сред с препаратами

Для определения лекарственной чувствительности к лекарственным препаратам в лаборатории должны иметься поверенные весы, позволяющие производить взвешивание с точностью до 0,2 мг, что обеспечит точность навески препаратов с погрешностью не более +/- 1,5%.

Стрептомицин

Для определения лекарственной чувствительности к стрептомицину используют стрептомицина сульфат.

По данным производителя активность стрептомицина сульфата составляет 750 мг в 1 г чистой субстанции.

Чтобы получить исходный рабочий раствор (А), содержащий в 1 мл раствора 1 мг активной субстанции, следует:

- (А) приготовить навеску 20 мг стрептомицина сульфата с точностью до 0,2 мг, что будет соответствовать 15 мг активного начала, и растворить в 15 мл стерильной дистиллированной воды - 1 мг/мл = 1000 мкг/мл.

Приготовление питательной среды:

Для приготовления 200 мл питательной среды на 40 культур (40 пробирок по 5 мл) на каждое разведение препарата необходимо:

В две стерильные промаркированные колбы (N 1 - 10 мкг/мл, N 2 - 25 мкг/мл) стерильной пипеткой налить последовательно:

- в N 1 - 198 мл среды + 2 мл раствора (А) = 10 мкг/мл;

- в N 2 - 195 мл среды + 5 мл раствора (А) = 25 мкг/мл.

Желательно вначале налить в колбы расчетное количество раствора А, а затем расчетное количество питательной среды.

Тщательно перемешать содержимое круговыми движениями колбы. Содержимое каждой колбы разлить в 40 пробирок по 5 мл в каждую, начиная с колбы N 1. Пробирки поместить в наклонном положении в аппарат для свертывания, добиваясь равномерной величины косяков (примерно 8 - 10 см), и проводить процедуру свертывания питательной среды в обычном порядке.

Изониазид

Активность препарата: в 1 г чистой субстанции содержится 990 мг активного начала = 99%.

Приготовить навеску 20 мг изониазида:

- (А) в 20 мл стерильной дистиллированной воды растворить 20 мг изониазида - 1 мг/мл - 1000 мкг/мл;

- (Б) к 9 мл стерильной дистиллированной воды добавить 1 мл раствора (А) = 100 мкг/мл.

Приготовление питательной среды:

Для приготовления 200 мл питательной среды на 40 культур (5 мл x 40) на каждое разведение препарата необходимо:

В две стерильные промаркированные колбы (N 1 - 1 мкг/мл, N 2 - 10 мкг/мл) стерильной пипеткой налить последовательно:

- в N 1 - 198 мл среды + 2 мл раствора (Б) = 1 мкг/мл;

- в N 2 - 198 мл среды + 2 мл раствора (А) = 10 мкг/мл.

Желательно вначале налить в колбы расчетное количество раствора Б или А, а затем расчетное количество питательной среды.

Перемешивание, разливание и коагулирование производят, как и в предыдущем случае.

Рифампицин

Активность препарата: в 1 г чистой субстанции - 970 мг активного начала = 97%.

Взвесить 30 мг порошковидной формы чистой субстанции рифампицина.

Рифампицин нерастворим в дистиллированной в воде, поэтому можно предложить нижеприведенную последовательность приготовления растворов:

Приготовление питательной среды:

На 200 мл питательной среды на 40 культур (5 мл x 40):

Приготовить навеску 30 мг и перенести ее в стерильную пробирку N 1.

(1) 30 мг RIF + 2,0 мл этанола - 14550 мкг/мл.

Подогреть до Т 35 - 40 °C на водяной бане. Затем, используя стерильные пробирки:

(А) 2,0 мл раствора (1) + 5,2 H2O - 4000 мкг/мл;

(Б) 2,5 мл раствора (А) + 2,5 мл H2O - 2000 мкг/мл.

Маркируют стерильные колбы N 1 "40 мкг/мл", N 2 "80 мкг/мл":

- в N 1 - 4 мл (Б) + 196 мл среды - 40 мкг/мл;

- в N 2 - 4 мл (А) + 196 мл среды - 80 мкг/мл.

Для ускорения полного растворения препарата допустимо легкое подогревание на водяной бане до 35 - 40 °C.

Желательно вначале налить в обе колбы расчетное количество растворов А или Б, а затем последовательно добавить в каждую из них расчетное количество питательной среды.

Содержимое колб N 1 и N 2 тщательно перемешать круговыми движениями. Содержимое каждой колбы разлить в 40 пробирок по 5 мл в каждую, начиная с колбы N 1. Пробирки поместить в наклонном положении в аппарат для свертывания, добиваясь равномерной величины косяков (примерно 8 - 10 см), и проводить процедуру свертывания питательной среды в обычном порядке.

Этамбутол

Активность препарата: в 1 г чистой субстанции - 740 мг активного начала.

Для определения лекарственной устойчивости используется этамбутол дигидрохлорид.

(А) приготовить навеску препарата весом 20 мг вещества и растворить ее в 14,8 мл стерильной дистиллированной воды - 1 мг/мл = 1000 мкг/мл.

(Б) к 8 мл стерильной дистиллированной воды добавить 2 мл раствора (А) - 200 мкг/мл.

Приготовление питательной среды:

Для приготовления 200 мл питательной среды на 40 культур (5 мл x 40) на каждое разведение препарата необходимо:

В две стерильные промаркированные колбы (N 1 "2 мкг/мл", N 2 "5 мкг/мл") стерильной пипеткой налить последовательно:

- в N 1 - 198 мл среды + 2 мл раствора (Б) = 2 мкг/мл;

- в N 2 - 195 мл среды + 5 мл раствора (Б) = 5 мкг/мл.

Желательно вначале налить в обе колбы расчетное количество раствора Б, а затем последовательно добавить в каждую из них расчетное количество питательной среды.

Тщательно перемешать содержимое круговыми движениями колбы. Содержимое каждой колбы разлить в 40 пробирок по 5 мл в каждую, начиная с колбы N 1. Пробирки поместить в аппарат для свертывания и проводить процедуру свертывания питательной среды в обычном порядке.

Канамицин

Активность препарата: в 1 г чистой субстанции канамицина моносульфата колеблется от 750 до 823 мг активного начала.

Для расчета возьмем величину активности, равную 750 мкг в 1 мг.

Чтобы получить исходный рабочий раствор (А), содержащий в 1 мл раствора 2000 мкг активной субстанции, следует:

(А) приготовить навеску 30 мг порошковидной формы канамицина моносульфата = 22,5 мг активного начала и растворить в 11,3 мл стерильной дистиллированной воды - 2 мкг/мл = 2000 кг/мл.

Для приготовления 200 мл питательной среды на 40 культур (40 пробирок по 5 мл) на каждое разведение препарата необходимо:

В две стерильные промаркированные колбы (N 1 - 30 мкг/мл, N 2 - 50 мкг/мл) стерильной пипеткой налить последовательно:

- в N 1 - 197 мл среды + 3 мл раствора (А) = 30 мкг/мл;

- в N 2 - 195 мл среды + 5 мл раствора (А) = 50 мкг/мл.

Желательно вначале налить в обе колбы расчетное количество раствора А, а затем последовательно добавить в каждую из них расчетное количество питательной среды.

Тщательно перемешать содержимое круговыми движениями колбы. Содержимое каждой колбы разлить в 40 пробирок по 5 мл в каждую, начиная с колбы N 1. Пробирки поместить в наклонном положении в аппарат для свертывания, добиваясь равномерной величины косяков (примерно 8 - 10 см), и проводить процедуру свертывания питательной среды в обычном порядке.

Протионамид (этионамид)

Оба препарата плохо растворяются в воде.

Активность препарата: в 1 г чистой субстанции - 990 мг активного начала.

Препарат нерастворим в дистиллированной воде.

(А) приготовить навеску препарата весом 20 мг вещества и растворить в 3 мл ректифицированного этилового спирта 96° или диметил-сульфоксида. Добавить к раствору 6,9 мл стерильной дистиллированной воды - 2000 мкг/мл.

Приготовление питательной среды:

Для приготовления 200 мл питательной среды на 40 культур (5 мл x 40) на каждое разведение препарата необходимо:

В две стерильные промаркированные колбы (N 1 "30 мкг/мл", N 2 "50 мкг/мл") стерильной пипеткой налить последовательно:

- в N 1 - 197 мл среды + 3 мл раствора (А) - 30 мкг/мл;

- в N 2 - 195 мл среды + 5 мл раствора (А) - 50 мкг/мл.

Желательно вначале налить в обе колбы расчетное количество раствора А, а затем последовательно добавить в каждую из них расчетное количество питательной среды.

Тщательно перемешать содержимое круговыми движениями колбы. Содержимое каждой колбы разлить в 40 пробирок по 5 мл в каждую, начиная с колбы N 1. Пробирки поместить в аппарат для свертывания и проводить процедуру свертывания питательной среды в обычном порядке.

Капреомицин

Содержание активного начала в препарате - 840 мг в 1 г.

РАСТВОРЫ КАПРЕОМИЦИНА ОТЛИЧАЮТСЯ НЕСТАБИЛЬНОСТЬЮ, ПОЭТОМУ ИХ ГОТОВЯТ НЕПОСРЕДСТВЕННО ПЕРЕД ПРИГОТОВЛЕНИЕМ СРЕД.

Для приготовления 200 мл питательной среды на 40 культур (5 мл x 40) можно воспользоваться следующей схемой:

Приготовить навеску 20 мг вещества.

(А) 20 мг кампреомицина + 8,4 мл H2O - 2000 мкг/мл.

Колбы N 1 "30 мкг/мл", N 2 "50 мкг/мл":

- в N 1 - 3 мл (А) + 197 мл среды - 30 мкг/мл;

- в N 2 - 5 мл (А) + 195 мл среды - 50 мкг/мл.

Желательно вначале налить в колбы расчетное количество раствора А, а затем расчетное количество питательной среды.

Перемешивание, разливание и коагулирование производят, как и в предыдущем случае.

Циклосерин (D-cycloserin)

В 1 г препарата 980 мг активного начала.

Растворы циклосерина отличаются нестабильностью, поэтому их готовят непосредственно перед приготовлением сред.

(А) приготовить навеску препарата весом 20 мг вещества и растворить в 9,9 мл стерильной дистиллированной воды - 2 мг/мл = 2000 мкг/мл.

Приготовление питательной среды:

Для приготовления 200 мл питательной среды на 40 культур (5 мл x 40) на каждое разведение препарата необходимо:

В две стерильные промаркированные колбы (N 1 - 30 мкг/мл, N 2 - 50 мкг/мл) стерильной пипеткой налить последовательно:

- в N 1 - 197 мл среды + 3 мл раствора (А) - 30 мкг/мл;

- в N 2 - 195 мл среды + 5 мл раствора (А) - 50 мкг/мл.

Желательно вначале налить в колбы расчетное количество раствора А, а затем расчетное количество питательной среды.

Перемешивание, разливание и коагулирование производят, как и в предыдущем случае.

ПАСК

Активность препарата: в 1 г чистой субстанции - 877,2 мг активного начала.

Для примера расчета возьмем среднюю величину активности, равную 880 мг в 1 мг.

Чтобы получить исходный рабочий раствор (А), содержащий в 1 мл раствора 1,0 мг активной субстанции, следует:

(А) взвесить на электронных или аналитических весах 20 мг порошковидной формы ПАСК = 17,6 мг активного начала и растворить в 17,6 мл стерильной дистиллированной воды - 1 мг/мл = 1000 мкг/мл;

(Б) к 18 мл стерильной дистиллированной воды добавить 2 мл раствора А - 100 мкг/мл.

Приготовление питательной среды:

Для приготовления 200 мл питательной среды на 40 культур (40 пробирок по 5 мл) на каждое разведение препарата необходимо:

В две стерильные промаркированные колбы (N 1 "1 мкг/мл", N 2 "5 мкг/мл") стерильной пипеткой налить последовательно:

- в N 1 - 198 мл среды + 2 мл раствора (Б) - 1 мкг/мл;

- в N 2 - 190 мл среды + 10 мл раствора (Б) - 5 мкг/мл.

Желательно вначале налить в обе колбы расчетное количество раствора Б, а затем последовательно добавить в каждую из них расчетное количество питательной среды.

Тщательно перемешать содержимое круговыми движениями колбы. Содержимое каждой колбы разлить в 40 пробирок по 5 мл в каждую, начиная с колбы N 1. Пробирки поместить в аппарат для свертывания и проводить процедуру свертывания питательной среды в обычном порядке.

Офлоксацин

Активность препарата: в 1 г чистой субстанции - 1000 мг активного начала.

Офлоксацин нерастворим в дистиллированной воде, для его растворения применяется 0,1 N раствор NaOH. Для этого:

к навеске 0,4 г NaOH добавить 100 мл стерильной дистиллированной воды = 0,1 N NaOH;

(А) приготовить навеску препарата весом 20 мг вещества и растворить ее в 20 мл 0,1 N раствора NaOH - 1 мг/мл = 1000 мкг/мл;

(Б) к 12 мл стерильной дистиллированной воды добавить 3 мл раствора (А) - 200 мкг/мл.

Приготовление питательной среды:

Для приготовления 200 мл питательной среды на 40 культур (5 мл x 40) на каждое разведение препарата необходимо:

В две стерильные промаркированные колбы (N 1 "2 мкг/мл", N 2 "10 мкг/мл") стерильной пипеткой налить последовательно:

- в N 1 - 198 мл среды + 2 мл раствора (Б) = 2 мкг/мл;

- в N 2 - 190 мл среды + 10 мл раствора (Б) = 10 мкг/мл.

Желательно вначале налить в обе колбы расчетное количество раствора Б, а затем последовательно добавить в каждую из них расчетное количество питательной среды.

Тщательно перемешать содержимое круговыми движениями колбы. Содержимое каждой колбы разлить в 40 пробирок по 5 мл в каждую, начиная с колбы N 1. Пробирки поместить в аппарат для свертывания и проводить процедуру свертывания питательной среды в обычном порядке.

Пиразинамид



Pages:     | 1 || 3 |

Похожие работы:

«Пояснительная записка к курсу "Паразитарные инвазии" Изменение условий внешней среды, экологические катаклизмы и техногенные воздействия на организм человека повсеместно привели к снижению иммунитета в популяции в целом. "Классические" инфекции перестали быть значительной проблемой здравоохранения....»

«ОПЫТ ПОДДЕРЖКИ ЭКОЛОГИЧЕСКОГО ТУРИЗМА РУССКИМ ГЕОГРАФИЧЕСКИМ ОБЩЕСТВОМ В РОССИИ И РЕГИОНАХ ПРИВОЛЖСКОГО ФЕДЕРАЛЬНОГО ОКРУГА А.А.Чибилёввице-президент Русского географического общества, председатель Посто...»

«ХАРРАСОВА АЛИНА АГЛЯМОВНА МБОУ СОШ № 101 с углубленным изучением экономики Демского района ГО г.Уфа РБНаучные руководители: Юсупова В.М., учитель биологии высшей категории, МБОУ СОШ № 10...»

«Сценарий экологической сказки "Спасем реку Турью!" Ведущий. На планете год от года Человек вредит природе. Даже не поймет, чудак, Что природа – не пустяк! Он привык все покорять!И не может он понять: Сам себе ведь он вредит, Об этом сказка говорит! Звучит музыка. Выходят ребята. Мы ходили на рыбалку, Рыбок удили в...»

«Занятие 6.2 Характеристика и механизм действия гидрофобных гормонов. Регуляция водно-минерального обмена Цель занятия-знать химическое строение, метаболические эффекты кортикостероидных горм...»

«Состав педагогических работников МКУ "Детский дом № 7 "Дружба" № Ф.И.О. сотрудника Должность Общий/ Пед. стаж Квалифика-ционная категория Образование, специальность,квалификация Курсы повышения квалификации, переподготовки 1 Савинова Татьяна  Алексан...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИРОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования"ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ" Ишимский педагогический институт им. П.П. Ершова (филиал) Тюменского государственного у...»

«РОССИЙСКАЯ ФЕДЕРАЦИЯМИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования"ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ" Ишимский педагогический институт им. П.П. Ершова (филиал) Тюменского государственного университетаУТВЕРЖДАЮ ФИЗИКА...»

«КОМИТЕТ ПО ПРИРОДОПОЛЬЗОВАНИЮ ОХРАНЕ ОКРУЖАЮЩЕЙ СРЕДЫ И ОБЕСПЕЧЕНИЮ ЭКОЛОГИЧЕСКОЙ БЕЗОПАСНОСТИРАСПОРЯЖЕНИЕ № Об утверждении Порядка представления и контроля отчетности об образовании, утилизации, обезвреживании, о размещении отходов,представляемой в уведомительном порядкесубъектами малого и среднего предпринимательства,в процессе х...»

«Антоневич Е.Н. Международный клуб учёных (МКУ) СПб. Инженер-исследователь. Antonpet14@yandex.ru ГЕНОДРЕВО ФТС–УНИВЕРСАЛЬНАЯ СИСТЕМА МНОГОУРОВНЕВОЙ ДИАЛЕКТИКИ ОТ ДРЕВНЕЙ ГЕНЕТИКИ КНИГИ ПЕРЕМЕН ДО СОВРЕМЕННОЙ СИСТЕМОГЕНЕТИКИ Аннотация....»

«Тестовые задания по биологии 9 класс ВОУД 200 вопросов1. Зерновка – плодА) пшеницыВ) капустыС) подсолнечникаD) кленаЕ) белены2. Трофяной белый мох иначе называется:А) сфагнумомВ) ламинариейС) багрянкойD) плауномЕ) кукушкин лён3. Ткань, придающая прочность органам растения называется:А) образовательная В) покровная С) фот...»

«Дорогие коллеги! Приглашаем вас на семинар Биологическое образование и его роль в повседневной жизни. Как школьные уроки могут спасти исчезающие виды животных от вымирания? 22 сентября 2016 г. в 17:00, в Государственном биологическом музее им. К. А. Тимирязева (Москва, Малая Грузинская, 15) Семинар проводит София Шухова — популяризато...»

«Муниципальное образовательное учреждение Колесурская средняя общеобразовательная школа Селтинского района, Удмуртской республики Рассмотрено на заседании методического объединения протокол №_ от "_" _ 20г. Руководитель РМО Принято на заседании педагогического совета "_"_ Протокол № Согласовано Зам. дир...»

«СПЕЦИФИКАЦИЯ проверочной работы для промежуточной аттестации по БИОЛОГИИ, 5 класс по теме: "Введение. Разнообразие живых организмов" Назначение проверочной работы Проверочная работа предназначена для проведения промежуточного контроля знаний по теме "Введение. Разнообразие живых организмов" Докум...»

«Биология 7 класс Тема: Тип Круглые черви. Аскарида человеческая. Цель урока: раскрыть особенности строения и процессов жизнедеятельности круглых червей, рассмотреть особенности человеческой аскариды в связи с паразитическим образом жизни. Оборудование: мультимедиа проектор,...»

«МІНІСТЕРСТВО ОСВІТИ І НАУКИ, молоді та спорту УКРАЇНИ Херсонський державний університетЗАТВЕРДЖУЮ Н.Тюхтенко Проректор з навчальної та науковопедагогічної роботи, голова науково-методичної ради ""_ 2011_р. Навчальна практика з зоології Інстит...»

«2879725-51435"ОСТАНАЙ АЛАСЫ КIМДIГIНI ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ БIЛIМ БЛIМI" "ОТДЕЛ ОБРАЗОВАНИЯМЕМЛЕКЕТТIК МЕКЕМЕСI АКИМАТА ГОРОДА КОСТАНАЯ" Б Й Р Ы П Р И К А З 21.12. 2016 жыл №1261 Жалпы пндер бойынша Республикалы олимпиаданы ІІ (алалы) кезеіні орытындысы туралы Білім бліміні "2016-2017 жылд...»

«Протолитический баланс почв Е.В. Шамрикова, д.б.н., Институт биологии Коми НЦ УрО РАН Протолитический баланс (ПБ) почв в значительной мере является продуктом почвообразования и представляют собой фунда...»

«Экзаменационные вопросы по основам БТ БТ микроорганизмов. 1 блок. 1-5 Тумашбаева 1. Биотехнология, цели и задачи, история возникновения, основные направления. Тумашбаева 2. Биологические объекты, используемые в биотехнологических процессах (микробные технологии). Тумашбаева 3. Значение асептических условий для биоп...»

«Экзаменационные вопросы по дисциплине "Иммунология" для студентов гуманитарного и медико-биологического образования направления подготовки "Биология"1. Реакция нейтрализации токсина антитоксином. Механизм. Способы постановки, применение.2. Иммуноглобулины, структура и функции....»

«Перечень процедур и методов исследования, не входящих в стоимость оздоровительной программы "Антистресс" санаторий "Алтай-West" Гидроколонотерапия ФиточаиОбщее УФО "СОЛАНА" Гирудотерапия ТонзиллорЛечение табакокуренияСауна, бассейн, джакузи (с...»









 
2017 www.docx.lib-i.ru - «Бесплатная электронная библиотека - интернет материалы»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.